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Abstract. We study a Liouville type theorem for stable solutions of fibiéowing
semilinear equation involving Grushin operatorg A, u + a?|z[>**Ayu) =
|ulP~ u, (z,y) € RV = RN xRN2 wherep > 1,a > 0 anda # 0. Basing on the
technique of Farina [1], we establish the nonexistence ofrivial stable solutions
under the range < p.(N,) whereN, = N + (14 «)N,, andp.(N,, ) is a certain
(explicitly given) positive constant depending B
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1. Introduction

In this paper, we study the semilinear degenerate partifdreintial equation of
the form

—Gou = |ulf~tu (1.1)

whereG, = A, + a*|z[**A, is the Grushin operator), andA, are Laplace operators
with respect tar € RM andy € R"2. Here we always assume that# 0 ,a > 0,

p > 1l and Ny, N, > 1. Recall thatG,, is elliptic for |x| # 0 and degenerates on the
manifold {0} x R™. This operator belongs to the wide class of subelliptic afmes
studied by Franchet al. in [2]. In the special case = 1, problem (1.1) is close related
to the Heisenberg Laplacian equatidu = f(u) in H* = C" x R, whereAy is the
Heisenberg Laplacian (see e.qg., [3, 4]).

Problem (1.1) has recently attracted much attention inetarof mathematics
directions. The most interesting questions are about tletezxce and non-existence [5];
the multiplicity of solutions [6]; the symmetry propertie§]; the asymptotic
behaviour [8]; the regularity estimates [9-11].
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Liouville type theorem for stable solutions to elliptic etjons involving the Grushin operator

Let us recall that the Liouville-type theorem is the nontease of nontrivial
solution of problem (1.1) in the whole spa@&’ = R x RM:. In recent years,
the Liouville property has emerged as one of the most powéshls in the study of
qualitative properties for nonlinear PDEs. It turns out thrae can obtain from Liouville
type theorems a variety of results such as universal, p@etwa priori estimate; universal
and singularity estimates; decay estimates, etc., seedd@]references therein. In
addition, Liouville type results combined with degree tgpguments are useful to obtain
the existence of solutions of semilinear boundary valudleras in bounded domains
(see [13]). In what follows, we make a short review on the méaevelopments of
Liouville-type property for the problem (1.1).

In the class of nonnegative solutions, it has been recenlygal by Monticelli [14]
for nonnegative classical solutions, and by Yu [15] for negetive weak solutions.
The optimal condition on the range of the exponenpis< %ng where N, :=
Ny + (1 + a)N, is called the homogeneous dimension. The main tool in [1}islthe
Kelvin transform combined with technique of moving planBgfore that, Dolcetta and
Cutri [16] established the Liouville-type theorem for negative super-solutions under
the conditionp < % (see also [17]). Further results on Liouville type theorem o
manifold was established in [18].

In the the class of sign-changing solutions, the Liouviyipe theorem is still open,
even in the special case of Laplace operator wite- 0. However, in a special class
of solutions — the so-called stable solutions, the Lioeviljpe result fora = 0 was
completely established by Farina [1] (for the propertiestable solutions, we refer to the

monograph of Dupaigne [19]).
Theorem 1.1(Farina [1]) Letu € C?(RY) be a stable solution ofl.1)with

{1<p<+oo if N <10

1 <p<p(N)= <N—(§f_—2§gv+jvoﬁv—1 if N> 11.

Thenu = 0.

On the other hand, foN > 11 andp > p.(N), the equatiorf1.1)admits a smooth,
positive, bounded, stable and radial solution.

The exponeng,.(/N) stands for the Joseph-Lundgren exponent (see [20]). The mai
tools in [1] are the nonlinear integral estimates combinéith whe property of stable
solutions. In addition, this technique was employed to ioltae optimal Liouville type
theorem for finite Morse index classical solutions. Somédiegions of Liouville type
results on qualitative properties of solutions, such asutieersal a priori estimate and
the behaviour of solution near an isolated singularity,engdso studied in [1].

In this paper, we will extend the result of Farina [1] to thegeal caser > 0 and
look for the effect of the degeneracy on the range of the eaptonon Liouville-type
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theorem. It seems that the presence of the weight teffnmakes the problem more
challenging. The main difficulty is that the Grushin operatononautonomous. This
requires suitable scaled test functions in the integrainegé. On the other hand, we
make use of the properties of the Grushin divergent and tecésed distance to derive
the nonlinear integral estimates. To our best knowledgmj\ille type theorems for stable
solutions to (1.1) have not been established so far.

2. Formulation of main result

In this section, we state our main result concerning the xistence of nontrivial
stable solutions of (1.1).

Firstly, without loss of generality, we always assume thatd¢onstant in (1.1) is
equal tol. We then recall the definition of stable solutions, see [19].

Definition 2.1. Letu € C*(RY) be a classical solution of1.1). The solution: is said to
be stable if

Qu(w) = [ (Va0 + 1V, 0 = pluP™0?) dady > 0, foral 4 € CL(RY),
(2.1)

Recall thatV,, := N; + (a + 1) N, is the homogeneous dimension®f x Rz,
We define the critical exponent

+00 if N, <10

Pe(Na) = {(Na—2)2—4zva+8m i '
o2 (Na—10) if N, > 10

(2.2)

The main result of this paper is the following:

Theorem 2.1.Letu € C?(RY) is a stable solution ofl.1)with 1 < p < p.(N,). Then,
u is the trivial solution.

Remark 2.1.

e In (2.2), we can see the impact of the exponend the critical exponent.(N,,).

e The result of A.Farina-Theorem 1.1 is a consequence of oum negult with
a=0.

e Note that Theorem 1.1 is optimal in the sense that,dfo= 0, N > 11 and
p > p.(N), there exist stable radial solutions to (1.1)RA" x R (see [1]). In the
casea > 0, it seems still difficult to prove the existence of stableusions to (1.1) on
RM x R™2 under the conditiop > p.(N,) with N, > 10. However, ifp is sufficiently
large, for example > p.(Ny), there exist stable solutions which do not depend on the
y-variable.

14



Liouville type theorem for stable solutions to elliptic etjons involving the Grushin operator

A brief outline of the proof

Here we give the outline of the proof inspired by ideas of Ari&a[1]. Suppose
thatu is a classical stable solution of (1.1). By using the stgbdondition (2.1) with the
test function\u\%lw, ¢ € C=(RY), we show that for some > 1

1 2
4’}/ RN
vy+1 1

< / ||V gel2dady + (L L / G () dady, (23)
RN 4’}/ 2 RN

where Vg = (V,,|z]*V,) is known as Grushin gradient. Let = ¢™ ¢ €
C%(RY; [~1;1]) and making use of some integral estimates to arrive at

/ |ulP TP dady
RN
2 2a 2 2c p-‘%{
<O [Vt + 19,00 + 018001+ of18,00) oy, 2

and
[ Gaundsay
RN

= O/RN (Vi + [V, + [ As] + [ A,]) T dady. (2.5)

The following key estimate is then deduced from (2.4) an8)(2.

/RN <)VG <|u|WT_lu) ’2 N |u|p+’7) W2 drdy

(2.6)
Pty
< o [ (V0P + a1V, + 0] (18,01 + l218,01)) 5 dady,

Finally, by choosing suitable scaled test functions dependn a large parameter
R, the right hand side of (2.6) is bounded GWN“*Q%. The constant is thus taken
such thatV,, — 27;% < 0 and the proof is finished if we lgt — +oo.

3. Proof of Theorem 2.1

We first establish a key tool to prove the main result. Theofeihg proposition is
an extension of Proposition 4 in [1].

Proposition 3.1. Letp > 1 andu € C?*(RY) be a stable solution ofL.1). Fix a real
numbery € [1, 2p+24/p(p—1) — 1) and an integermn > ]ﬁ%. Then there is a constant
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Cpm~ > 0 depending only op, m and~, such that

[ (192 (= ) e

< oo [ (Va0 + o V08 + 9] 18,01+ 118,01)) 7 dady,

y—1 2
A\ <|u|Tu)) + |u|p+7) ™" dxdy

i)

forall ¢ € C*(RY;[-1;1]).

Proof. Denote the Grushin gradient by, = (V,,|z|°V,) and let¢p € C?(RY).
Multiplying (1.1) by |u|"~'u¢? and integrating oveR™, we obtain

—Gau.\u\71u¢2dxdy:/ |u|PT p*ddy. (3.2)
RN

RN

Noticing thatV |u|" 1 = ﬁvxu.u\uﬁ_l andV,(|u| "z u) = “’T’LIVIu|u|%1 Using
this and the integration by parts to obtain

/ (—ALu).Ju]" tug’dxdy
RN
= [ (¥ () Sdedy + [ (Fu) (7 0) V()
RN RN
:'y/ \qu\2|u|71¢2dxdy+/ (Vu) (\u\”’lu) V. (¢?)dxdy
RN RN

:L/ ’V <|u|721u>’2¢2dxdy+L/ V| u| "V () dzdy

()
A
C(y+1)2 /RN

The same arguments also follows that

y=1 2 1
11 2 _ v+l 2
V. <\u\ 2 u)’ ¢ dxdy o /RN lu| " AL (%) dady.

a1 4 o a1 |2
[ syl ugdndy = D [ a9, (o) | 6dady
R R

(v +1)?
1 (e
T Jux |z |**[u] " Ay (¢?)dady.

Inserting the above computations into (3.2), we have

Lemma 3.1. There holds
12 1)? 1
/ ’vG <|u|7u>) Pddy = LT / P R ddy+ / LG o (7 derdly.
RN 4'}/ RN 4")/ RN (3 3)
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We next use the fact thatis a stable solution of (1.1). In (2.1), we choose the test
function|u|™z u¢ € C1(RY) and get

/RN (]vg (jul*= o) ]2 - p|u|p+7¢2) ddy > 0. (3.4)
A straightforward computation gives
Vo (lu'ug) = Ve ([ul*Tu) ¢+ [ul T uVes.
and
Ve (= us) | = [V (1u2 )| 6 + [l 1960 + 596 (ul"™) Vas?.

Combining this with the integration by parts, the ineqyal8.4) becomes

J— 2 1
/ Vo (lu*=u), ¢2dxdy+/ |u|“’+1|VG¢|2da:dy——/ [u[ "Gl () dardy
RN RN 2 RN
> / plul¢dudy. (3.5)
RN

From Lemma 3.1 and (3.5), we have

Lemma 3.2. There holds

1 2
4’7 RN
v+1 1

< [ luPVesPdnay+ (L0 - 0) [ G dady. (36)
RN 4’7 2 RN

Here, the assumptions gny imply thatp — % >0 and%l — % <0.
Letm > P be a fixed integer. Fap € CZ(RY; [~1;1]), put$ = ¢™. Hence,

‘wam‘Q _ m2|vxw‘2w2m_2; |x‘2a ‘vywm‘Q _ m2|x‘2a|vyw‘2w2m—2

and
Awam - 2m¢2m_2 ((2m - 1)\V:c¢|2 + waiﬂ) s
[P Ay = 2map*m ((2m — D]z Vy* + WBFQAW) .
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The right hand side of (3.6) is smaller than or equal to

Cony [ 1710 (1920 + 29,00+ |61 800+ [ 8,01) dady.
RN

Consequently,

[ty
]RN

< Cmmp/ a2 (VP + 2V P + [ (| Aat)] + [2]*Ay¢])) dady.
RN
(3.7)
Applying Holder’s inequality to the right hand side of (B.We get

1+~
p+

pty
L/|M”W®Wﬂ@§6ﬁw{/ wm“¢M4yH¢m4
RN RN

p—1

XMNWWHmwmuwmmﬂwmmwmmﬁﬂ(m)

Moreover, since

om Pt o o (PTT ) _oPt7
v+1 v+1 v+1

—1
Do oPED S 0P E0 GPEY ) (39)
v+1 v+1 v+1 v+1

=2m
and|y| < 1, itimplies that
(g2 =2) 75 = upr oGS < g, (3.10)

It then follows from (3.8) and (3.10) that

1ty
p+y
/ lu[PT* " dady < Chyry {/ |U|p+7w2mdxdy}
RN RN

p—1

| [ 70 a9, + 0,0+l 18,00) 5 o] @)

or equivalently,

/ PP ddy
RN

pty Pty
< iy / (Vo + 29,0 2 + [ (|Aa0] + 2| A,0]) = dady. (3.12)
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Similarly, if we choosey = ™, then the second term in the right hand side of (3.3)
can be estimated as follows

/ G (P dardy
]RN

SC%/\MW%%”UVMF+MMWWF+WMAmHﬂﬁ%%MD®@
RN
1+

p+y
<Cp { / IUI””medwdy]
RN

p—1

bS]
2

x [/RN (Va0 + 229,62 + [0](|Auto] + [ Ayw))) 7 dady

ity pty
< CuCiy / (V0P P2V + D1 Aaw] + | Ay)) = dady,
(3.13)

whereC,,, = 2m(2m — 1) and in the last inequality we have used (3.12).
The estimations (3.3) and (3.13) yield

a=1 2 2
/ ‘VG <|u|Tu>‘ Y™ dady
RN
pty
<C [ (Va4 V0 + (01800 + a8,00) 7 dody, (39
RN

whereC' depends only om, p, .
Finally, Proposition 3.1 results from (3.12) and (3.14). O

Proof of Theorem 2.1
Let y € C(R; [0, 1]) have the properties

x(t) = 1for |t| < 1;x(t) = 0for|t| > 2.

For R large enough, we choos&:(x,y) = x <‘—1’;‘> X <%) € C>*(RY;[0,1]). Then,

1|, |7l |y 1 2], . Yl
‘v:cwR(xay)‘ = E X (ﬁ)X(RaJrl) 7‘Vy¢R(37,Z/)‘ = Rlta X(E)X (Ra+1) )
an el w1 el ol
n— s Yy ALy )
|AzYr(z,y)| = |x\RX(§)X(Ra+1)+@X (E)X(Ra—kl) )
Ay = | oLy By L ey o
yYR\T, Y)| = |y|R1+aX R X Ro+1 R2(1+a)X R Ro+1/|”
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These computations together with the boundednegsaof all its derivatives deduce that

4

= (3.15)

(IVar? + |2 Vyorl” + |Vr| (|Actr] + |2]**|AyYr])) <

where( is independent oR.
Hence, (3.1) and (3.15) give

[ (15 (=)

(IVatorl® + 2|V yurl® + [Vr| (18R] + |2[**|Ayr])) dudy

Vv, (‘U‘WT_I’M)) + \u\p”) Yy drdy

<

/{|x|<2R;y|<2R1+a}
O RN1 RN2(1+04) — CRN(I

(p+v

_9obty
2p_1

RQ
(3.16)

whereC' does not depend oR.
Finally, we need to show that, give¥, andp in Theorem 2.1, there is a constant

€ [1,2p+2y/p(p — 1) — 1) such that

N, — 2’% <0. (3.17)

CaseN, < 10: for anyp > 1, the functiony — @ IS continuous, increasing and

phEi2yple- ol =2 > 5. Thus, there is verifying (3.17).

p—1
CaseN, > 10. conS|derthe inequality

rop+2/pp—1) -1
N, — 22T 2P pip ) <00rNa(p—1)—2(p+2p+2/plp—1)—1) < 0.

-
(3.18)

By changing of variable = p — 1 > 0, it is equivalent to
(Ny — 6)t —4 < 4Vi2 4 t. (3.19)
If t < 5, then (3.19) is true. If > 5", then (3.19) is equivalent to

(N2 — 12N, +20)t* — 8(Ny — 4)t +16 < 0

and then
4(Ny—4) —8yN, — 1 e 4(Ny—4)+8yN, — 1
N2 — 12N, + 20 N2 —12N,+20
Note that forv, > 10, we have
4(N, —4)—8\/7 4N, —4)—24 4 _ 4
N2 — 12N, + 20 _N — 12N, +20 N,—2 N,—6
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Thus, (3.19) is true foral) < ¢ < 4(]\]%2141);]3:%%‘1. This shows that (3.18) is true for

4(Ny —4)+8VN, —1
N2 — 12N, +20

1 <p< 1+ pc(Na)'

As above, combining the fact that the functipn— N, — f_%? IS continuous, decreasing
and (3.18), there existse [1,2p + 2/p(p — 1) — 1) such that

N, — 2P .
p—1

Letting R — oo in (3.16) and using (3.17), we obtain= 0 onR". The proof of
Theorem 2.1 is finished. O
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