
HNUE JOURNAL OF SCIENCE DOI: 10.18173/2354-1059.2019-0026
Natural Science, 2019, Volume 64, Issue 6, pp. 12-22
This paper is available online at http://stdb.hnue.edu.vn

LIOUVILLE TYPE THEOREM FOR STABLE SOLUTIONS TO ELLIPTIC
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Abstract. We study a Liouville type theorem for stable solutions of thefollowing
semilinear equation involving Grushin operators−(∆xu + a2|x|2α∆yu) =

|u|p−1u, (x, y) ∈ R
N = R

N1×R
N2 , wherep > 1, α > 0 anda 6= 0. Basing on the

technique of Farina [1], we establish the nonexistence of nontrivial stable solutions
under the rangep < pc(Nα) whereNα = N1+(1+α)N2, andpc(Nα) is a certain
(explicitly given) positive constant depending onNα.
Keywords: Liouville type theorem, stable solution, degenerate elliptic equations,
Grushin operators.

1. Introduction

In this paper, we study the semilinear degenerate partial differential equation of
the form

−Gαu = |u|p−1u (1.1)

whereGα = ∆x + a2|x|2α∆y is the Grushin operator,∆x and∆y are Laplace operators
with respect tox ∈ R

N1 andy ∈ R
N2 . Here we always assume thata 6= 0 , α > 0,

p > 1 andN1, N2 ≥ 1. Recall thatGα is elliptic for |x| 6= 0 and degenerates on the
manifold {0} × RN2 . This operator belongs to the wide class of subelliptic operators
studied by Franchiet al. in [2]. In the special caseα = 1, problem (1.1) is close related
to the Heisenberg Laplacian equation∆Hu = f(u) in Hn = Cn × R, where∆H is the
Heisenberg Laplacian (see e.g., [3, 4]).

Problem (1.1) has recently attracted much attention in variety of mathematics
directions. The most interesting questions are about the existence and non-existence [5];
the multiplicity of solutions [6]; the symmetry properties[7]; the asymptotic
behaviour [8]; the regularity estimates [9-11].

Received April 19, 2019. Revised June 19, 2019. Accepted June 26, 2019.
Contact Nguyen Thi Quynh, e-mail address: nguyen.quynh@haui.edu.vn

12



Liouville type theorem for stable solutions to elliptic equations involving the Grushin operator

Let us recall that the Liouville-type theorem is the nonexistence of nontrivial
solution of problem (1.1) in the whole spaceRN = RN1 × RN2. In recent years,
the Liouville property has emerged as one of the most powerful tools in the study of
qualitative properties for nonlinear PDEs. It turns out that one can obtain from Liouville
type theorems a variety of results such as universal, pointwise, a priori estimate; universal
and singularity estimates; decay estimates, etc., see [12]and references therein. In
addition, Liouville type results combined with degree typearguments are useful to obtain
the existence of solutions of semilinear boundary value problems in bounded domains
(see [13]). In what follows, we make a short review on the recent developments of
Liouville-type property for the problem (1.1).

In the class of nonnegative solutions, it has been recently proved by Monticelli [14]
for nonnegative classical solutions, and by Yu [15] for nonnegative weak solutions.
The optimal condition on the range of the exponent isp < Nα+2

Nα−2
, whereNα :=

N1 + (1 + α)N2 is called the homogeneous dimension. The main tool in [14, 15] is the
Kelvin transform combined with technique of moving planes.Before that, Dolcetta and
Cutrı̀ [16] established the Liouville-type theorem for nonnegative super-solutions under
the conditionp ≤ Nα

Nα−2
(see also [17]). Further results on Liouville type theorem on

manifold was established in [18].

In the the class of sign-changing solutions, the Liouville-type theorem is still open,
even in the special case of Laplace operator withα = 0. However, in a special class
of solutions – the so-called stable solutions, the Liouville type result forα = 0 was
completely established by Farina [1] (for the properties ofstable solutions, we refer to the
monograph of Dupaigne [19]).

Theorem 1.1(Farina [1]). Letu ∈ C2(RN) be a stable solution of(1.1)with
{

1 < p < +∞ if N ≤ 10

1 < p < pc(N) = (N−2)2−4N+8
√
N−1

(N−2)(N−10)
if N ≥ 11.

Thenu ≡ 0.

On the other hand, forN ≥ 11 andp ≥ pc(N), the equation(1.1)admits a smooth,
positive, bounded, stable and radial solution.

The exponentpc(N) stands for the Joseph-Lundgren exponent (see [20]). The main
tools in [1] are the nonlinear integral estimates combined with the property of stable
solutions. In addition, this technique was employed to obtain the optimal Liouville type
theorem for finite Morse index classical solutions. Some applications of Liouville type
results on qualitative properties of solutions, such as theuniversal a priori estimate and
the behaviour of solution near an isolated singularity, were also studied in [1].

In this paper, we will extend the result of Farina [1] to the general caseα > 0 and
look for the effect of the degeneracy on the range of the exponent p on Liouville-type
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theorem. It seems that the presence of the weight term|x|α makes the problem more
challenging. The main difficulty is that the Grushin operator is nonautonomous. This
requires suitable scaled test functions in the integral estimate. On the other hand, we
make use of the properties of the Grushin divergent and the associated distance to derive
the nonlinear integral estimates. To our best knowledge, Liouville type theorems for stable
solutions to (1.1) have not been established so far.

2. Formulation of main result

In this section, we state our main result concerning the nonexistence of nontrivial
stable solutions of (1.1).

Firstly, without loss of generality, we always assume that the constanta in (1.1) is
equal to1. We then recall the definition of stable solutions, see [19].

Definition 2.1. Letu ∈ C2(RN) be a classical solution of(1.1). The solutionu is said to
be stable if

Qu(ψ) :=

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 − p|u|p−1ψ2
)

dxdy ≥ 0, for all ψ ∈ C1
c (R

N).

(2.1)

Recall thatNα := N1 + (α + 1)N2 is the homogeneous dimension ofRN1 × RN2.
We define the critical exponent

pc(Nα) =

{

+∞ if Nα ≤ 10
(Nα−2)2−4Nα+8

√
Nα−1

(Nα−2)(Nα−10)
if Nα > 10

. (2.2)

The main result of this paper is the following:

Theorem 2.1. Letu ∈ C2(RN) is a stable solution of(1.1)with 1 < p < pc(Nα). Then,
u is the trivial solution.

Remark 2.1.

• In (2.2), we can see the impact of the exponentα to the critical exponentpc(Nα).

• The result of A.Farina-Theorem 1.1 is a consequence of our main result with
α = 0.

• Note that Theorem 1.1 is optimal in the sense that, forα = 0, N ≥ 11 and
p ≥ pc(N), there exist stable radial solutions to (1.1) inRN1 × RN2 (see [1]). In the
caseα > 0, it seems still difficult to prove the existence of stable solutions to (1.1) on
RN1 × RN2 under the conditionp ≥ pc(Nα) with Nα > 10. However, ifp is sufficiently
large, for examplep ≥ pc(N1), there exist stable solutions which do not depend on the
y-variable.
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Liouville type theorem for stable solutions to elliptic equations involving the Grushin operator

A brief outline of the proof

Here we give the outline of the proof inspired by ideas of A. Farina [1]. Suppose
thatu is a classical stable solution of (1.1). By using the stability condition (2.1) with the
test function|u| γ−1

2 uφ, φ ∈ C∞
c (RN), we show that for someγ ≥ 1

(

p− (γ + 1)2

4γ

)
∫

RN

|u|p+γφ2dxdy

≤
∫

RN

|u|γ+1|∇Gφ|2dxdy +
(

γ + 1

4γ
− 1

2

)
∫

RN

|u|γ+1Gα(φ
2)dxdy, (2.3)

where ∇G = (∇x, |x|α∇y) is known as Grushin gradient. Letφ = ψm, ψ ∈
C2

c (R
N ; [−1; 1]) and making use of some integral estimates to arrive at

∫

RN

|u|p+γψ2mdxdy

≤ C

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy, (2.4)

and
∫

RN

|u|γ+1Gα(ψ
2m)dxdy

≤ C

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy. (2.5)

The following key estimate is then deduced from (2.4) and (2.5):
∫

RN

(

∣

∣

∣
∇G

(

|u| γ−1

2 .u
)
∣

∣

∣

2

+ |u|p+γ

)

ψ2mdxdy

≤ Cp,m,γ

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|
(

|∆xψ|+ |x|2α|∆yψ|
))

p+γ

p−1 dxdy.

(2.6)

Finally, by choosing suitable scaled test functions depending on a large parameter

R, the right hand side of (2.6) is bounded byCRNα−2 p+γ

p−1 . The constantγ is thus taken
such thatNα − 2p+γ

p−1
< 0 and the proof is finished if we letR → +∞.

3. Proof of Theorem 2.1

We first establish a key tool to prove the main result. The following proposition is
an extension of Proposition 4 in [1].

Proposition 3.1. Let p > 1 andu ∈ C2(RN) be a stable solution of(1.1). Fix a real

numberγ ∈
[

1, 2p+ 2
√

p(p− 1)− 1
)

and an integerm ≥ p+γ

p−1
. Then there is a constant
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Cp,m,γ > 0 depending only onp,m andγ, such that

∫

RN

(

∣

∣

∣
∇x

(

|u| γ−1

2 .u
)
∣

∣

∣

2

+ |x|2α
∣

∣

∣
∇y

(

|u| γ−1

2 .u
)
∣

∣

∣

2

+ |u|p+γ

)

ψ2mdxdy

≤ Cp,m,γ

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|
(

|∆xψ|+ |x|2α|∆yψ|
))

p+γ

p−1 dxdy,

(3.1)

for all ψ ∈ C2
c (R

N ; [−1; 1]).

Proof. Denote the Grushin gradient by∇G = (∇x, |x|α∇y) and let φ ∈ C2
c (R

N).
Multiplying (1.1) by |u|γ−1uφ2 and integrating overRN , we obtain

∫

RN

−Gαu.|u|γ−1uφ2dxdy =

∫

RN

|u|p+γφ2dxdy. (3.2)

Noticing that∇x|u|γ+1 = 1
γ+1

∇xu.u|u|γ−1 and∇x(|u|
γ−1

2 u) = γ+1
2
∇xu.|u|

γ−1

2 . Using
this and the integration by parts to obtain
∫

RN

(−∆xu).|u|γ−1uφ2dxdy

=

∫

RN

(∇xu)∇x

(

|u|γ−1u
)

φ2dxdy +

∫

RN

(∇xu)
(

|u|γ−1u
)

∇x(φ
2)dxdy

= γ

∫

RN

|∇xu|2|u|γ−1φ2dxdy +

∫

RN

(∇xu)
(

|u|γ−1u
)

∇x(φ
2)dxdy

=
γ

(

γ+1
2

)2

∫

RN

∣

∣

∣
∇x

(

|u| γ−1

2 u
)
∣

∣

∣

2

φ2dxdy +
1

γ + 1

∫

RN

∇x|u|γ+1∇x(φ
2)dxdy

=
4γ

(γ + 1)2

∫

RN

∣

∣

∣
∇x

(

|u| γ−1

2 u
)
∣

∣

∣

2

φ2dxdy − 1

γ + 1

∫

RN

|u|γ+1∆x(φ
2)dxdy.

The same arguments also follows that
∫

RN

(−|x|2α∆yu).|u|
γ−1

2 uφ2dxdy =
4γ

(γ + 1)2

∫

RN

|x|2α
∣

∣

∣
∇y

(

|u| γ−1

2 u
)
∣

∣

∣

2

φ2dxdy

− 1

γ + 1

∫

RN

|x|2α|u|γ+1∆y(φ
2)dxdy.

Inserting the above computations into (3.2), we have

Lemma 3.1. There holds
∫

RN

∣

∣

∣
∇G

(

|u| γ−1

2 u
)
∣

∣

∣

2

φ2dxdy =
(γ + 1)2

4γ

∫

RN

|u|p+γφ2dxdy+
γ + 1

4γ

∫

RN

|u|γ+1Gα(φ
2)dxdy.

(3.3)
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Liouville type theorem for stable solutions to elliptic equations involving the Grushin operator

We next use the fact thatu is a stable solution of (1.1). In (2.1), we choose the test
function|u| γ−1

2 uφ ∈ C1
c (R

N) and get

∫

RN

(

∣

∣

∣
∇G

(

|u| γ−1

2 uφ
)
∣

∣

∣

2

− p|u|p+γφ2

)

dxdy ≥ 0. (3.4)

A straightforward computation gives

∇G

(

|u| γ−1

2 uφ
)

= ∇G

(

|u| γ−1

2 u
)

φ+ |u| γ−1

2 u∇Gφ.

and
∣

∣

∣
∇G

(

|u| γ−1

2 uφ
)
∣

∣

∣

2

=
∣

∣

∣
∇G

(

|u| γ−1

2 u
)
∣

∣

∣

2

φ2 + |u|γ+1|∇Gφ|2 +
1

2
∇G

(

|u|γ+1
)

∇Gφ
2.

Combining this with the integration by parts, the inequality (3.4) becomes

∫

RN

∣

∣

∣
∇G

(

|u| γ−1

2 u
)
∣

∣

∣

2

φ2dxdy +

∫

RN

|u|γ+1|∇Gφ|2dxdy −
1

2

∫

RN

|u|γ+1Gα(φ
2)dxdy

≥
∫

RN

p|u|p+γφ2dxdy. (3.5)

From Lemma 3.1 and (3.5), we have

Lemma 3.2. There holds

(

p− (γ + 1)2

4γ

)
∫

RN

|u|p+γφ2dxdy

≤
∫

RN

|u|γ+1|∇Gφ|2dxdy +
(

γ + 1

4γ
− 1

2

)
∫

RN

|u|γ+1Gα(φ
2)dxdy. (3.6)

Here, the assumptions onp, γ imply thatp− (γ+1)2

4γ
> 0 and γ+1

4γ
− 1

2
< 0.

Letm ≥ p+γ

p−1
be a fixed integer. Forψ ∈ C2

c (R
N ; [−1; 1]), putφ = ψm. Hence,

|∇xψ
m|2 = m2|∇xψ|2ψ2m−2; |x|2α |∇yψ

m|2 = m2|x|2α|∇yψ|2ψ2m−2

and
∆xψ

2m = 2mψ2m−2
(

(2m− 1)|∇xψ|2 + ψ∆xψ
)

,

|x|2α∆yψ
2m = 2mψ2m−2

(

(2m− 1)|x|2α|∇yψ|2 + ψ|x|2α∆yψ
)

.
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The right hand side of (3.6) is smaller than or equal to

Cm,γ

∫

RN

|u|γ+1ψ2m−2
(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

dxdy.

Consequently,
∫

RN

|u|p+γψ2mdxdy

≤ Cm,γ,p

∫

RN

|u|γ+1ψ2m−2
(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

dxdy.

(3.7)

Applying Hölder’s inequality to the right hand side of (3.7), we get

∫

RN

|u|p+γψ2mdxdy ≤ Cm,γ,p

[
∫

RN

(

|u|γ+1ψ2m−2
)

p+γ

γ+1 dxdy

]
1+γ

p+γ

×
[
∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy

]
p−1

p+γ

. (3.8)

Moreover, since

(2m− 2)
p+ γ

γ + 1
− 2m = 2m

(

p+ γ

γ + 1
− 1

)

− 2
p+ γ

γ + 1

= 2m
p− 1

γ + 1
− 2

p+ γ

γ + 1
≥ 2

p+ γ

γ + 1
− 2

p+ γ

γ + 1
= 0 (3.9)

and|ψ| ≤ 1, it implies that

(

|u|γ+1ψ2m−2
)

p+γ

γ+1 = |u|p+γψ
(2m−2)p+γ

γ+1 ≤ |u|p+γψ2m. (3.10)

It then follows from (3.8) and (3.10) that

∫

RN

|u|p+γψ2mdxdy ≤ Cm,γ,p

[
∫

RN

|u|p+γψ2mdxdy

]
1+γ

p+γ

×
[
∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy

]
p−1

p+γ

, (3.11)

or equivalently,
∫

RN

|u|p+γψ2mdxdy

≤ C
p+γ

p−1

m,γ,p

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy. (3.12)
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Similarly, if we chooseφ = ψm, then the second term in the right hand side of (3.3)
can be estimated as follows

∫

RN

|u|γ+1Gα(ψ
2m)dxdy

≤ Cm

∫

RN

|u|γ+1ψ2m−2
(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

dxdy

≤ Cm

[
∫

RN

|u|p+γψ2mdxdy

]
1+γ

p+γ

×
[
∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy

]
p−1

p+γ

≤ CmC
1+γ

p−1

m,γ,p

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy,

(3.13)

whereCm = 2m(2m− 1) and in the last inequality we have used (3.12).

The estimations (3.3) and (3.13) yield

∫

RN

∣

∣

∣
∇G

(

|u| γ−1

2 u
)
∣

∣

∣

2

ψ2mdxdy

≤ C

∫

RN

(

|∇xψ|2 + |x|2α|∇yψ|2 + |ψ|(|∆xψ|+ |x|2α|∆yψ|)
)

p+γ

p−1 dxdy, (3.14)

whereC depends only onm, p, γ.

Finally, Proposition 3.1 results from (3.12) and (3.14).

Proof of Theorem 2.1.

Let χ ∈ C∞
c (R; [0, 1]) have the properties

χ(t) = 1 for |t| ≤ 1;χ(t) = 0 for |t| ≥ 2.

ForR large enough, we chooseψR(x, y) = χ
(

|x|
R

)

χ
(

|y|
Rα+1

)

∈ C∞
c (RN ; [0, 1]). Then,

|∇xψR(x, y)| =
1

R

∣

∣

∣

∣

χ′(
|x|
R

)χ(
|y|
Rα+1

)

∣

∣

∣

∣

; |∇yψR(x, y)| =
1

R1+α

∣

∣

∣

∣

χ(
|x|
R

)χ′(
|y|
Rα+1

)

∣

∣

∣

∣

,

and

|∆xψR(x, y)| =
∣

∣

∣

∣

n− 1

|x|R χ′(
|x|
R

)χ(
|y|
Rα+1

) +
1

R2
χ′′(

|x|
R

)χ(
|y|
Rα+1

)

∣

∣

∣

∣

,

|∆yψR(x, y)| =
∣

∣

∣

∣

n− 1

|y|R1+α
χ(

|x|
R

)χ′(
|y|
Rα+1

) +
1

R2(1+α)
χ(

|x|
R

)χ′′(
|y|
Rα+1

)

∣

∣

∣

∣

.
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These computations together with the boundedness ofχ and all its derivatives deduce that

(

|∇xψR|2 + |x|2α|∇yψR|2 + |ψR|
(

|∆xψR|+ |x|2α|∆yψR|
))

≤ C1

R2
, (3.15)

whereC1 is independent ofR.

Hence, (3.1) and (3.15) give
∫

RN

(

∣

∣

∣
∇x

(

|u| γ−1

2 .u
)
∣

∣

∣

2

+ |x|2α
∣

∣

∣
∇y

(

|u| γ−1

2 .u
)
∣

∣

∣

2

+ |u|p+γ

)

ψ2m
R dxdy

≤
∫

{|x|≤2R;|y|≤2R1+α}

(

|∇xψR|2 + |x|2α|∇yψR|2 + |ψR|
(

|∆xψR|+ |x|2α|∆yψR|
))

dxdy

≤ C

R
2(p+γ

p−1
)
RN1RN2(1+α) = CR

Nα−2 p+γ

p−1 ,

(3.16)

whereC does not depend onR.

Finally, we need to show that, givenNα andp in Theorem 2.1, there is a constant
γ ∈ [1, 2p+ 2

√

p(p− 1)− 1) such that

Nα − 2
p+ γ

p− 1
< 0. (3.17)

CaseNα ≤ 10: for anyp > 1, the functionγ 7→ p+γ

p−1
is continuous, increasing and

p+2p+2
√

p(p−1)−1

p−1
> 5p−3

p−1
> 5. Thus, there isγ verifying (3.17).

CaseNα > 10: consider the inequality

Nα− 2
p+ 2p+ 2

√

p(p− 1)− 1

p− 1
< 0 orNα(p− 1)− 2(p+2p+2

√

p(p− 1)− 1) < 0.

(3.18)
By changing of variablet = p− 1 > 0, it is equivalent to

(Nα − 6)t− 4 < 4
√
t2 + t. (3.19)

If t < 4
Nα−6

, then (3.19) is true. Ift ≥ 4
Nα−6

, then (3.19) is equivalent to

(N2
α − 12Nα + 20)t2 − 8(Nα − 4)t+ 16 < 0

and then
4(Nα − 4)− 8

√
Nα − 1

N2
α − 12Nα + 20

< t <
4(Nα − 4) + 8

√
Nα − 1

N2
α − 12Nα + 20

.

Note that forNα > 10, we have

4(Nα − 4)− 8
√
Nα − 1

N2
α − 12Nα + 20

≤ 4(Nα − 4)− 24

N2
α − 12Nα + 20

=
4

Nα − 2
<

4

Nα − 6
.
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Thus, (3.19) is true for all0 < t <
4(Nα−4)+8

√
Nα−1

N2
α−12Nα+20

. This shows that (3.18) is true for

1 < p < 1 +
4(Nα − 4) + 8

√
Nα − 1

N2
α − 12Nα + 20

= pc(Nα).

As above, combining the fact that the functionγ 7→ Nα − p+γ

p−1
is continuous, decreasing

and (3.18), there existsγ ∈ [1, 2p+ 2
√

p(p− 1)− 1) such that

Nα − 2
p+ γ

p− 1
< 0.

LettingR → ∞ in (3.16) and using (3.17), we obtainu ≡ 0 onRN . The proof of
Theorem 2.1 is finished.
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