TRƯỜNG ĐẠI HỌC QUY NHƠN

Tăng cường khả năng bắt giữ khí SO₂ của $M_2(BDC)_2TED$ (M = Mg, V, Co, or Ni) bằng nghiên cứu tính toán

Nguyễn Quang Vinh¹, Nguyễn Trương Mỹ Duyên², Nguyễn Lê Bảo Trân¹, Nguyễn Văn Nghĩa¹, Lê Thị Thảo Viễn¹, Huỳnh Thị Minh Thành¹, Nguyễn Thị Xuân Huynh^{1,*}

> ¹Khoa Khoa học Tự nhiên, Trường Đại học Quy Nhơn, Việt Nam ²Trung tâm Khám phá khoa học và Đổi mới sáng tạo, Việt Nam

Ngày nhận bài: 02/12/2023; Ngày sửa bài: 03/02/2024; Ngày nhận đăng: 05/02/2024; Ngày xuất bản: 28/02/2024

TÓM TẮT

Cùng với việc phát triển các nguồn năng lượng sạch bền vững thì bảo vệ môi trường là vấn đề rất cấp thiết vì ô nhiễm không khí. Trong đó, SO₂ ảnh hưởng nghiêm trọng đến sức khỏe con người. Do đó, việc loại bỏ SO₂ làm sạch môi trường vô cùng cấp bách. Đã có rất nhiều công nghệ được đề xuất để giải quyết vấn đề này nhưng chưa thực sự hiệu quả. Sự nổi lên của vật liệu xốp có bề mặt riêng và tính xốp cực lớn đã thu hút nghiên cứu bắt giữ SO₂. Trong đó, vật liệu khung hữu cơ kim loại rất được quan tâm trong hấp phụ, tách lọc và một số ứng dụng tiềm năng khác. Trong nghiên cứu này, nhóm M₂(BDC)₂TED (M = Mg, V, Co, Ni) được chọn để nghiên cứu khả năng bắt giữ SO₂ bằng phương pháp mô phỏng tại 298 K và áp suất đến 2,5 bar. Kết quả chỉ ra lượng SO₂ hấp phụ trong M₂(BDC)₂(TED) (or M-MOF) theo thứ tự: Co < Ni < V < Mg. Tại 298 K và 2,5 bar, lượng hấp phụ SO₂ lớn nhất với 16 mmol/g cho Mg-MOF và 13 – 14 mmol/g cho các M-MOF còn lại. Nghiên cứu cũng làm sáng tỏ các yếu tố làm tăng cường hấp phụ SO₂ trong M-MOF gồm nhiệt hấp phụ, diện tích bề mặt riêng (SSA) và thể tích rỗng (V_p). Kết quả cho thấy khả năng bắt giữ SO₂ tăng gần tuyến tính theo SSA và V_p. Hơn nữa, bản chất tương tác giữa các DOS của SO₂ với M₂(BDC)₂(TED) cũng được làm sáng tỏ. Các DOS của SO₂ chủ yếu tương tác với quỹ đạo *p* của C và O trong M-MOF ở dưới mức Fermi.

Từ khóa: MOFs M₂(BDC)₂TED, bắt giữ SO₂, hấp phụ SO₂, diện tích bề mặt riêng, thể tích rỗng.

*Tác giả liên hệ chính. Email: nguyenthixuanhuynh@qnu.edu.vn

Computational study on enhancing SO_2 capture capacity of M₂(BDC)₂TED (M = Mg, V, Co, or Ni)

Nguyen Quang Vinh¹, Nguyen Truong My Duyen², Nguyen Le Bao Tran¹, Nguyen Van Nghia¹, Le Thi Thao Vien¹, Huynh Thi Minh Thanh¹, Nguyen Thi Xuan Huynh^{1,*}

> ¹Faculty of Natural Sciences, Quy Nhon University, Vietnam ²Explora Science Quy Nhon, Vietnam

> > Received: 02/12/2023; Revised: 03/02/2024; Accepted: 05/02/2024; Published: 28/02/2024

ABSTRACT

Along with finding and developing sustainable clean energy sources, environmental protection is highly urgent because the air is increasingly polluted by more and more toxic gases. In particular, the presence of toxic gas SO, seriously affects human health. Therefore, removing toxic SO, gas to clean the living environment is extremely urgent. Many technologies have been suggested to solve this, but they have not been effective yet. In recent years, the emergence of porous materials with ultra-large specific surface areas and ultra-high porosity has attracted the attention of scientists in SO, capture. Among porous materials, metal-organic frameworks are intensely interested in adsorption, separation, and other potential applications. Herein, we select the porous materials M₂(BDC)₂TED (M = Mg, V, Co, Ni) to study the SO, capture using simulation approaches. The research was performed at room temperature 298 K and pressure under 2.5 bar. Our results show that the order of metals gradually increasing the SO, adsorption uptake in $M_2(BDC)_2(TED)$ is Co < Ni < V < Mg. Specifically, at 298 K and 2.5 bar, the amount of SO, adsorption is about 16 mmol/g for Mg-MOF, and about 13 - 14 mol/g for the M-MOF (M = V, Ni, Co). The study also elucidated the influencing factors that enhance SO₂ adsorption in M₂(BDC)₂TED, including adsorption isosteric heat, specific surface area, and pore volume. Noticeably, the specific surface areas and pore volumes of M-MOFs almost linearly enhance the SO, capture capability at room temperature and low pressure. Furthermore, we also elucidate the orbital interaction nature between SO, and M₂(BDC)₂(TED) MOFs in detail. Therein, the DOS peaks of the SO, adsorbate mainly interact with the adsorbents' C and O p orbitals below the Fermi level.

Keywords: M₂(BDC)₂TED MOFs, SO₂ capture, SO₂ adsorption, specific surface area, pore volume.

1. INTRODUCTION

Sulfur dioxide (SO_2) is a colorless, nonflammable, and common pollutant in industrial production as well as daily life. Exposure to SO_2 may irritate the nose, throat, and eyes. Besides, SO_2 is a corrosive gas with high solubility (120 g/L) in water and can combine with water and air to form sulfuric acid, the main component of acid rain.^{1,2,3} Despite the low SO₂ content in the air, it is classified as a toxic gas and one of the six most common environmental pollutants by the US Environmental Protection Organization.⁴ Notably, significant amount of sulfur oxides (SO_x), especially SO₂, is released into the environment after the combustion of petroleum-based fuels

*Corresponding author. Email: nguyenthixuanhuynh@qnu.edu.vn in internal combustion engines utilized in motorized vehicles.3 Therefore, removing or reducing the quantities of SO₂ in the atmosphere is exceptionally urgent. In technologies, SO, capture based on the adsorption mechanism has been remarkable.5 Metal-organic frameworks (MOFs) among porous materials are an exciting alternative for SO₂ capture due to outstanding structural properties such as ultrahigh surface area, high porosity, and controllable structural characteristics.^{2,4} Therefore, SO, capture in nanoporous materials has attracted scientific interest. Many MOFs and other porous candidates have been studied and highly appreciated for SO, adsorption. Fu and co-workers showed that functionalized covalent triazine framework (CTF-CSU41) achieved the highest uptake of SO₂ with a maximum capacity of 6.7 mmol/g (*i.e.*, 42.9 wt.%) at (298 K, 0.15 bar).^{3,6} For MOFs, MOF-177 exhibited the highest SO₂ uptake with 25.7 mmol/g at (293 K, 1 bar). Some other MOFs also showed high SO₂ capture capacity, ranging from 4.8 to 17.3 mmol/g.3 Besides many other MOFs, M₂(BDC)₂(TED) or M(BDC)(TED)_{0.5} materials have been attractive for applications in capturing toxic gases (CO₂, SO₂, CH₄, NH₃, H₂S, NO_{1}, \ldots).⁴ In this research, we use simulations to find optimum M₂(BDC)₂(TED) MOFs for SO₂ capture, where M is magnesium (Mg), vanadium (V), cobalt (Co) or nickel (Ni); BDC = 1,4-Benzenedicarboxylate; TED = Triethylendiamine or DABCO: 1.4-Diazabicyclo [2.2.2] octane.7

2. COMPUTATIONAL METHODS

The research approach combines density functional theory (DFT) calculations and grand canonical Monte Carlo (GCMC) simulations. Firstly, we used DFT calculations to optimize the geometries of $M_2(BDC)_2(TED)$ MOFs, namely M-MOFs. Secondly, GCMC simulations were used to obtain the isotherms and isosteric heat of SO₂ adsorption as well as calculate the structural characteristics of the M-MOFs.

To optimize the unit cell, extract partial atomic charges of the M-MOFs, search stable or

favourite adsorption sites and DOS/PDOS, we utilized the Vienna ab initio simulation package (VASP)^{8,9} for the van der Waals dispersioncorrected density functional theory (vdW-DF).^{10,11} The plane-wave basis set with the cut-off energy of 700 eV for the plane-wave basis set.^{12,13} We performed the surface Brillouinzone integrations using the Monkhorst and Pack *k*-point sampling technique with the $3\times3\times3$ mesh grid and the Gamma point at the center.¹⁴ The Methfessel-Paxton smearing of order 1 was used for the ions and geometry relaxation, and atomic charge calculation with the smearing width sigma of 0.1 eV.¹⁵

GCMC simulations using the RASPA code were selected to study the gravimetric uptakes of SO₂ in the M-MOFs.¹⁶ These simulations were performed in constant volume, temperature, and chemical potential at room temperature (298 K) and pressures up to 2.5 bar. The number of 300000 MC steps were simulated for the random insertion, deletion, translation, and rotation of SO₂ molecules in the simulation box, repeated $3 \times 3 \times 3$ times of the primary unit cell along the *a*, *b*, and *c* lengths.

The interactions between atoms of SO₂ gas and the MOFs were described by (i) the Coulombic or electrostatic interactions with its cut-off radius of 13 Å, and (ii) the van der Waals interactions with the simple Lennard-Jones (LJ) model with the LJ cut-off radius of 20 Å.^{17,18} The cut-off radius and other parameters were carefully checked before performing the GCMC simulation. The partial charges of atoms of the M-MOFs were extracted from the densityderived electrostatic and chemical (DDEC6 atomic charges method, listed in Table 1, with the symbols for the atoms shown in Figure 1.^{19–22} The qualities of the LJ potential well depth and diameter were determined by the Lorentz-Berthelot combining rules, one of the most common types of mixing rules for unlike atoms.^{23,24} The parameters for σ_i and ε_i (*i* refers to the atoms like Fe, H, C, O in the M-MOFs or S, O in SO₂) were selected from the generic

force fields for MOFs in the RASPA software package. 16,25

Figure 1. The symbol for atomic types with different charges of M-MOFs.

Table 1. The LJ (ε , σ) and charge parameters (q) for atomic types of M-MOFs and SO₂.

MMOE	Atomic	LJ parameters		()
M-MOFS	types	ε/kg (K)	$\sigma(\text{\AA})$	q (e)
	C1			0.739
	C2	47.856	3.472	-0.073
	C3			0.011
M = Mg	Н	7.648	2.846	0.088
	N	38.949	3.262	-0.362
	0	48.158	3.033	-0.721
	Mg	55.857	2.691	1.385
	C1			0.627
	C2	47.856	3.472	-0.073
	C3			-0.012
M = V	Н	7.648	2.846	0.076
	N	38.949	3.262	-0.174
	0	48.158	3.033	-0.574
	V	8.051	2.801	0.926
	C1			0.613
	C2	47.856	3.472	-0.071
	C3			-0.025
M = Co	Н	7.648	2.846	0.076
	Ν	38.949	3.262	-0.099
	0	48.158	3.033	-0.491
	Со	7.045	2.558	0.573
M = Ni	C1			0.636
	C2	47.856	3.472	-0.071
	C3			-0.025
	Н	7.648	2.846	0.079
	N	38.949	3.262	-0.118
	0	48.158	3.033	-0.539
	Ni	7.548	2.524	0.660
SO ₂ ^{25,26}	0	58.725	3.198	-0.201
	S	189.353	3.410	0.402

In this work, to search the stable or favorite adsorption sites of SO₂ gas in M₂(BDC)₂(TED), we calculated the adsorption energy of SO₂ gas in the M₂(BDC)₂TED series by the expression $\Delta E = E_{(M-MOF+SO_2)} - (E_{M-MOF} + E_{SO_2})$. Where $E_{(M-MOF+SO_2)}$, E_{M-MOF} , and E_{SO_2} are the total energies of the [M - MOF + SO₂] system, the pristine M₂(BDC)₂TED MOF, and the isolated SO₂ molecule, respectively.

3. RESULTS AND DISCUSSION

3.1. Optimization of the unit cell of M₂(BDC)₂(TED)

First, we constructed a unit cell based on experimental and computational works Ni₂(BDC)₂(TED) (BDC) = Benzene for dicarboxylate, and TED = Triethylenediamine) (Figure 2).7,27 We optimized all ions and the size of the unit cells. Then, we replaced Ni with other bivalent metals such as Mg, V, and Co, which often appear in MOFs and greatly influence gas adsorption. The results obtained for the unit cells are listed in Table 2 and compared with the experimental data for M = Ni,²⁸ showing that these optimal results show reliability with 1.61%, 1.57%, and 4.81% for a (or b), c lengths, and the cell volume. The unit cell volume $(V_{\text{M-MOF}})$ of the M-MOFs also does not change much, and they are in slightly increasing order: $V_{\text{Co-MOF}} < V_{\text{V-MOF}} \approx V_{\text{Ni-MOF}} < V_{\text{Mg-MOF}}$.

Figure 2. A primary unit cell of M-MOFs (M = Mg, V, Co or Ni).

https://doi.org/10.52111/qnjs.2024.18108

94 | Quy Nhon University Journal of Science, 2024, 18(1), 91-100

	Lattice c	Volume	
M ₂ (BDC) ₂ TED	(Å	of unit	
	a = b	С	cell (Å ³)
M = Mg	10.98	9.39	1130
M = V	10.96	9.37	1125
M = Co	10.90	9.31	1113
M = Ni	10.97	9.38	1128
$M = Ni (exp. data)^{28}$	11.15	9.53	1185
Error compared exp. data (%)	1.61	1.57	4.81

Table 2. The optimized parameters of the unit cell of the $M_2(BDC)_2TED$ structures, compared with other works.

3.2. The SO₂ capture capability of M,(BDC), TED MOFs

The SO₂ adsorption isotherms are shown in Figure 3 for both excess and absolute uptakes at pressures up to 2.5 bar. The results show these two uptakes are nearly similar for SO₂ on the M-MOFs (M = Mg, V, Co, or Ni) at low pressure under 2.5 bar. The adsorption uptakes for all metals are listed in Table 3. Our data are also compared to other ones. Compared to MOF-177, the best SO₂ capture to date, M-MOFs strongly adsorb SO₂ at low pressure below 0.5 bar.¹ On the contrary, above 0.5 bar, MOF-177 shows an outstanding uptake compared to our M-MOFs and other MOFs.¹

The adsorption tendency in Mg-MOF is more substantial than in Ni-MOF, which is consistent with the experimental data of Kui Tan et al. at the same temperature and pressure conditions (0.11 bar, 298 K),⁷ and and V. B. López-Cervantes et al (Table 3).^{29,30}

Figure 3. Absolute and excess isotherms of SO_2 on $M_2(BDC)_2(TED)$ at 298 K, where dashed lines and solid lines refer to absolute and excess uptakes.

Table	3.	Absolute	and	excess	SO_2	uptakes	on
M ₂ (BD	DC),	(TED) at 2	98 K				

M-MOFs	SO₂ uptakes (mmol/g)				
	0.1 bar	1 bar	2.5 bar		
M = Mg	11.69	15.13	15.92		
M = V	9.80	13.13	13.85		
M = Co	9.31	12.32	13.07		
M = Ni	9.59	12.88	13.54		
$M = Ni^{17}$			13.6		
$M = Mg^7$	6.44 (0.11 bar)	8.60 (1.02 bar)	(50 501)		
$M = Ni^7$	4.54	9.97			
Mg(II)-MOF ²⁹	(0.11 bar)	(1.13 bar) 19.5			
Ni(II)-MOF ³⁰		12.5			
MOF-177 ^{1,29}	1.3	25.7 (maximum, 293 K, 0.97 bar)	-		

In this work, we study the adsorption capacity of M-MOFs for SO₂ up to a pressure of 2.5 bar because researching at high pressures is unnecessary, and the results achieved only change a little.¹⁷ The results show that Mg-MOF has the strongest adsorption of SO₂, followed by V-MOF, Ni-MOF, and Co-MOF. Here, Mg-MOF adsorbs superiorly compared to the remaining M-MOFs (M = V, Ni, Co). At 2.5 bar and 298 K, the best uptakes reach for Mg-MOF with n_{exc} =15.82mmol/g, n_{abs} =15.92mmol/g,followedby V-MOF (n_{exc} = 13.77 mmol/g, n_{abs} = 13.85 mmol/g), Ni-MOF (n_{exc} = 13.46 mmol/g, n_{abs} = 13.54 mmol/g), and Co-MOF (n_{exc} = 13.00 mmol/g, n_{abs} = 13.08 mmol/g).

3.3. Effect of structural characteristics and isostericheat on the SO₂ adsorption of $M_2(BDC)_2(TED)$

To explain the reason Mg increases the ability to capture SO_2 based on the adsorption mechanism compared to other metals, we analyze the factors that have a substantial impact on the gas adsorption of MOFs, which are the structural characteristics (specific surface area and pore volume) and adsorption isosteric heat.

Isosteric heat of adsorption, Q_{st} , is an essential factor required to describe the thermal

performance of adsorptive systems.³¹ The Q_{st} of SO₂ for the M-MOF series calculated in low pressures under 1.0 kPa are presented in Figure 4. The results show that Q_{st} tends to increase as pressure increases. However, the values change little in the low-pressure region. At higher pressures, the Q_{st} value of SO₂ for M-MOFs is most significant for Mg-MOF, rising from 42.03 kJ/mol to 47.97 kJ/mol. Meanwhile, other M-MOFs increase slightly with pressure. Specifically, uptakes of SO₂ in V-MOF: 40.61 – 44.73 kJ/mol, Co-MOF: 40.93 – 45.37 kJ/mol, and Ni-MOF: 40.78 – 44.94 kJ/mol.

Figure 4. Isosteric heats of SO_2 adsorption for M-MOFs vs the pressure.

The Q_{st} value of SO₂ adsorption is in the order V-MOF \approx Ni-MOF \approx Co-MOF < Mg-MOF, exhibiting that SO₂ adsorption on Mg₂(BDC)₂(TED) is the most noticeable as analyzed above. Moreover, we also research the influence of specific surface area (SSA) and pore volume (V_p) on the adsorptive ability of SO₂ on the M-MOFs. The SSA values are smaller than many other MOFs, but the pore volume is relatively large, as detailed in Table 4. The SSA and pore volume of the M-MOFs are in increasing order Co < Ni < V < Mg. This tendency is consistent with H. Xiang's work for M(BDC)(TED)_{0.5} with M is Ni and Co.³²

Table 4. The specific surface area and the pore volume of $M_2(BDC)_2(TED)$, compared to another work.

	This	work	H. Xiang ³²	
M-MOFs	SSA	V_{p}	SSA	V_{p}
	(m^{2}/g)	(cm^{5}/g)	(m^{2}/g)	(cm ³ /g)
M = Mg	1930.95	0.87	-	-
M = V	1727.18	0.78	-	-
M = Co	1627.58	0.74	1708	0.619
M = Ni	1686.09	0.76	1905	0.757

Figure 5. The correlation between the uptakes and (a) the specific surface area (SSA), (b) pore volume (Vp) of M₂(BDC)₂(TED) at 298 K.

The results in Figure 5 express that the amounts of SO₂ adsorption increase almost entirely linearly with SSA and V_p . Among them, the M-MOF with M = Mg is outstanding, which explains the most excellent SO₂ adsorption into Mg₂(BDC)₂(TED). Therefore, these two structural characteristics (V_p and SSA) have a powerful impact on the ability to capture SO₂ on MOFs at room temperature.

3.4. Nature of interaction between SO₂ and M₂(BDC)₂(TED) at the electronic orbital level

GCMC simulation results give us quantitative numbers, results that can be compared with experiments and evaluate the relative adsorption strength of the M-MOFs by changing their metals. Therefore, to clarify the nature of the interaction between SO_2 and M-MOFs, we perform further calculations on the electronic structure through DFT calculations.

https://doi.org/10.52111/qnjs.2024.18108

^{96 |} Quy Nhon University Journal of Science, 2024, 18(1), 91-100

We indicate the preferential SO, adsorption in M-MOFs (M = Mg, V, Co, Ni). In this work, the effect of metals on SO, adsorption on the M-MOF is of interest; Therefore, we only search for stable SO₂ adsorption sites near the metal of the MOF. Therefore, we only search for stable SO₂ adsorption sites near the metal of the MOF by evaluating adsorption energies. The values of SO₂ adsorption energies on the M-MOFs are shown in Table 5 and Figure 6. Noting that the more negative ΔE , the more stable the adsorption.

Among the selected metals in this research, vanadium (V) indicates the most considerable SO₂ adsorption with the most negative energy value $\Delta E = -0,62$ eV); the remaining metals show the values of ΔE close to each other, in the range of -0.40 to -0.43 eV. Table 5 also shows that the distance between SO₂ and the metal of all M-MOFs has very little difference except V, which has shorter SO₂-V distance. Although V increases the superior adsorption energy compared to other metals, Mg still gives the most substantial SO₂ adsorption on the Mg₂(BDC)₂(TED). These results exhibit a significant and decisive influence on structural characteristic quantities such as SSA and V_p .

Table 5. Adsorption energy (ΔE) and the distance between the nearest atoms of SO₂ and the M-MOF ($d_{SO_2 - MOF}$).

M-MOF	Adsorption	$(d_{\mathrm{SO}_2-\mathrm{MOF}})$	
	(eV)	(kJ/mol)	(Å)
M = Mg	-0.41	-40.21	3.47
M = V	-0.62	-59.91	3.36
M = Co	-0.40	-38.85	3.44
M = Ni	-0.41	-40.45	3.50

To provide further insights into the interaction nature between SO_2 (adsorbate) and M-MOFs (adsorbent), we calculated and analyzed the modification of the total electronic density of states (DOS) and orbital-projected density of states (PDOS) between SO_2 and M-MOFs (M = Mg, V, Co, Ni) for the above favorable

SO₂ adsorption systems. First, we analyzed the DOS peaks of isolated SO₂, including $1\sigma^*$, $2\sigma/1\pi/3\sigma$ 2n, 3n, 4n, and $1\pi^*$ (Figure 7).²⁷ The results revealed that, after the adsorption of SO₂ on M-MOFs, the adsorbate's DOS peaks shift to the left side of the Fermi level with substantial expansion of the DOS ($2\sigma/1\pi/3\sigma$ and 4n). There, the total peaks of the SO₂ on M-MOFs with M = Co, Ni, V much stronger shift than those of M = Mg (Figure 7). Notably, V-MOF also causes all DOS peaks of SO₂ to split except the 3n peak, which explains the most favorite adsorption of SO₂ in V-MOF compared to the remaining MOFs.

Figure 6. The favorable SO_2 adsorption configurations on $M_2(BDC)_2(TED)$: a) M = Mg, b) M = V, c) M = Co, and d) M = Ni.

Figure 7. Total DOS of the adsorbed SO_2 in M-MOFs (M = Mg, V, Co or Ni) compared to the isolated SO_2 (black dash line). The Fermi level was set to 0 eV.

Next, the modification of the DOS of the SO_2 molecule and the M-MOF's atoms (C, O, N, and M) was considered (Figure 8). Here, we ignored the weak interaction between H atoms of the MOFs and SO_2 . The results indicate that the overlap between the DOS peaks of SO_2 molecule with the majority of C and O *p* orbitals (Figure 8) and a small fraction of M *d* orbitals in M-MOFs (Figure 9) enhances the interaction between the adsorbate and adsorbent. In particular, for $V_2(BDC)_2(TED)$, substantial overlap occurs between $SO_2 \ 1\pi^*$ peak and the M *d* (mainly d_{xz} ,

 d_{yz} , and d_{xy}) orbitals at about 0 eV (Fermi level) compared to other metals. This resonance can explain the most preferred adsorption of SO₂ in V-MOF. In contrast to other metals, Mg shows that the interaction occurs between the C and especially O p states of the Mg-MOF with SO₂ $2\sigma/1\pi/3\sigma$ state and N p orbitals with SO₂ 2n state. Note that we have analyzed the PDOS between SO₂ and the atoms of M-MOFs in detail and discussed the results obtained here despite ignoring some figures.

Figure 8. The overlap between DOS of the SO₂ and that of O, N, and M atoms of M-MOFs, where the Fermi level was set to 0 eV: a) SO,@Mg-MOF, b) SO,@V-MOF, c) SO,@Co-MOF, and d) SO,@Ni-MOF.

Figure 9. The orbital-projected DOS of the SO₂ with the states (*s*, *p*, *d*) of M atoms of M-MOFs, where the Fermi level was set to 0 eV: a) SO₂@Mg-MOF, b) SO₂@V-MOF, c) SO₂@Co-MOF, and d) SO₂@Ni-MOF.

https://doi.org/10.52111/qnjs.2024.18108 98 | Quy Nhon University Journal of Science, 2024, 18(1), 91-100

4. CONCLUSION

After optimizing the structure for Ni(BDC) (TED), we replaced the metal to obtain optimized geometries for M(BDC)(TED), with M being Mg, V, and Co by calculations based on vdW-DF. Unit cell volumes are in ascending order of $Co < V \approx Ni < Mg$.

The order of metals increasing the SO₂ adsorption uptakes on M₂(BDC)₂(TED) is Co < Ni < V < Mg. At 298 K and 2.5 bar, SO₂ uptakes are about 16 mmol/g for Mg-MOF (n_{exc} = 15.82 mmol/g, n_{abs} = 15.92 mmol/g) and about 13 – 14 mol/g for the M-MOF (M = V, Ni, Co).

Our work also elucidates the factors that enhance the amounts of SO_2 adsorption in $M_2(BDC)_2TED$, including the adsorption isosteric heat, specific surface area, and pore volume. Remarkably, the specific surface areas and pore volumes of M-MOFs almost linearly enhance the SO_2 capture at room temperature and low pressure.

Moreover, the physical insights at electronic orbitals illustrated that the SO₂@ $M_2(BDC)_2(TED)$ interactions are contributed by the C and O *p* orbitals (more predominant) and the metal *d* orbitals (weaker). Therein, the most stable SO₂ adsorption configuration is in V₂(BDC)₂(TED) by the more significant overlap between the V *d* states and the SO₂ orbitals. For SO₂@Mg₂(BDC)₂(TED), the dominant interactions occur between O *p* and C *p* states with $2\sigma/1\pi/3\sigma$ and N *p* with 2*n* of SO₂, respectively.

Acknowledgments

This work was financially supported by the Ministry of Education and Training of Vietnam under the grant number B2022-DQN-05. We also acknowledge supporting the computer time and software granted by the Lab of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon University, Quy Nhon, Vietnam.

REFERENCES

- C. Janiak. Metal-organic frameworks with potential application for SO₂ separation and fluegas desulfurization, ACS Applied Materials & Interfaces, 2019, 11, 17350–17358.
- E. M. Ahumada, M. L. D. Ramírez, M. D. J. V. Hernández, V. Jancik, I. A. Ibarra. Capture of toxic gases in MOFs: SO₂, H₂S, NH₃ and NO_x, *Chemical Science*, **2021**, *12*, 6772–6799.
- C. G. Livas, D. Raptis, E. Tylianakis, G. E. Froudakis. Multiscale theoretical study of sulfur dioxide (SO₂) adsorption in metal-organic frameworks, *Molecules*, 2023, 28(7), 3122.
- T. T. T. Huong, P. N. Thanh, N. T. X. Huynh, D. N. Son. Metal – organic frameworks: stateof-the-art material for gas capture and storage, *VNU Journal of Science: Mathematics - Physics*, 2016, 32, 67–85.
- E. M. Ahumada, A. L. Olvera, V. Jancik, J. E. S. Bautista, E. G. Zamora, V. Martis, D. R. Williams, I. A. Ibarra. MOF materials for thecapture of highly toxic H₂S and SO₂, *Organometallics*, 2020, 39, 883–915.
- Y. Fu, Z. Wang, S. Li, X. He, C. Pan, J. Yan, G. Yu. Functionalized covalent triazine frameworks for effective CO₂ and SO₂ removal, *ACS Applied Materials & Interfaces*, **2018**, *10*, 36002–36009.
- K. Tan, P. Canepa, Q. Gong, J. Liu, D. H. Johnson, A. Dyevoich, P. K. Thallapally, T. Thonhauser, J. Li, Y. J. Chabal. Mechanism of preferential adsorption of SO₂ into two microporous paddle wheel frameworks M(BDC)(TED)_{0.5}, *Chemistry* of Materials, 2013, 25, 4653–4662.
- G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, *Physical Review B*, 1996, 54, 11169–11186.
- G. Kresse, J. Furthmüller. Efficiency of abinitio total energy calculations for metals and semiconductors using a plane-wave basis set, *Computational Materials Science*, **1996**, *6*, 15–50.
- J. P. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, *Physical Review B*, 1992, 46, 6671–6687.

- J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple, *Physical Review Letters*, **1996**, 77, 3865–3868.
- 12. P. E. Blöchl. Projector augmented-wave method, *Physical Review B*, **1994**, *50*, 17953–17979.
- G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmentedwave method, *Physical Review B*, **1999**, *59*, 1758–1775.
- J. D. Pack, H. J. Monkhorst. Special points for Brillouin-zone integrations, *Physical Review B*, 1976, 13, 5188–5192.
- 15. M. Methfessel, A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals, *Physical Review B*, **1989**, *40*, 3616–3621.
- D. Dubbeldam, S. Calero, D. E. Ellis, R. Q. Snurr. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials, *Molecular Simulation*, **2016**, *42*, 81–101.
- N. T. X. Huynh, B. T. Duyen, P. T. Tram, T. T. D. Thanh, N. T. M. Duyen. Research on the capture of flue gases of the metal-organic framework Ni(BDC)(TED)_{0.5} by the classical simulation method, *Quy Nhon University Journal of Science*, **2021**, *15*(5), 5–12.
- N. T. X. Huynh, T. T. Nam, D. N. Son. Evaluation of H₂ and CO₂ adsorption into MIL-88A-Fe by Grand canonical Monte Carlo simulation, *Quy Nhon University Journal of Science*, **2021**, *15*(1), 5–12.
- T. A. Manz, N. G. Limas. Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology, *RSC Advances*, 2016, *6*, 47771–47801.
- N. G. Limas, T. A. Manz. Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials, *RSC Advances*, 2016, 6, 45727–45747.
- T. A. Manz. Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders, *RSC Advances*, 2017, 7, 45552–45581.
- N. G. Limas, T. A. Manz. Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more, *RSC Advances*, 2018, 8, 2678–2707.

- 23. H. A. Lorentz. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase, *Annalen der Physik*, **1881**, *248*, 127–136.
- 24. D. Berthelot. Sur le mélange des gaz, *Comptes Rendus Chimie*, **1898**, *126*, 1703–1855.
- D. Dubbeldam, K. S. Walton, T. J. H. Vlugt, S. Calero. Design, parameterization, and implementation of stomic force fields for adsorption in nanoporous materials, *Advanced Theory and Simulations*, 2019, *2*, 1900135.
- I. M. Martos, A. M. Calvo, J. J. G. Sevillano, M. Haranczyk, M. Doblare, J. B. Parra, C. O. Ania, S. Calero. Zeolite screening for the separation of gas mixtures containing SO₂, CO₂ and CO, *Physical Chemistry Chemical Physics*, **2014**, *16*, 19884–19893.
- D. N. Son, T. T. Thuy Huong, V. Chihaia. Simultaneous adsorption of SO₂ and CO₂ in an Ni(BDC)(TED)0.5 metal-organic framework, *RSC Advances*, 2018, *8*, 38648–38655.
- K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, Y. J. Chabal. Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration, *Chemistry* of Materials, 2012, 24, 3153–3167.
- M. A. Eva, D. W. Kim, W. Mohammad, C. M. Paulina, A. L. Olvera, D. R. Williams, V. Martis, H. A. L. García, S. L. Morales, D. S. Ibarra, G. Maurin, A. I. Ilich, C. S. Hong. Capture and detection of SO₂ by a chemically stable Mg(II)-MOF, *Journal of Materials Chemistry A*, **2022**, *10*, 18636–18643.
- V. B. L. Cervantes, D. W. Kim, J. L. Obeso, E. M. Ahumada, Y. A. A. Sánchez, E. S. González, C. Leyva, C. S. Hong, I. A. Ibarra, D. S. Ibarra. Detection of SO₂ using a chemically stable Ni(II)-MOF, *Nanoscale*, **2023**, *15*, 12471–12475.
- I. E. Menshchikov, A. V. Shkolin, E. M. Strizhenov, E. V. Khozina, S. S. Chugaev, A. A. Shiryaev, A. A. Fomkin, A. A. Zherdev. Thermodynamic behaviors of adsorbed methane storage systems based on nanoporous carbon adsorbents prepared from coconut shells, *Nanomaterials*, 2020, 10, 1–26.
- H. Xiang, A. Ameen, P. Gorgojo, F. R. Siperstein, S. M. Holmes, X. Fan. Selective adsorption of ethane over ethylene on M(BDC)(TED)_{0.5} (M = Co, Cu, Ni, Zn) metal-organic frameworks (MOFs), *Microporous and Mesoporous Materials*, **2020**, *292*, 109724.

https://doi.org/10.52111/qnjs.2024.18108 100 | *Quy Nhon University Journal of Science*, **2024**, *18*(1), 91-100