Thành phần hóa học từ cành cây Máu chó đá (*Knema saxatilis*)

Lê Nguyễn Thành^{1,*}, Trần Hữu Giáp¹, Hà Thị Thoa¹, Vũ Thị Huế¹, Nguyễn Hoàng Nam¹, Nguyễn Quốc Vượng¹, Nguyễn Thành Công², Diệp Thị Lan Phương^{3,*}

> ¹Viện Hóa sinh biển, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, Việt Nam ²Khoa Dược, Trường Đại học Đại Nam, Việt Nam ³Khoa Khoa học Tự nhiên, Trường Đại học Quy Nhơn, Việt Nam

Ngày nhận bài: 27/09/2022; Ngày nhận đăng: 13/12/2022; Ngày xuất bản: 28/02/2023

TÓM TẮT

Nghiên cứu thành phần hóa học của cành cây Máu chó đá *Knema saxatilis* đã phân lập được 6 hợp chất. Cấu trúc hóa học của chúng được xác định dựa trên các phổ MS và NMR, đó là 8-hydroxy eriodictyol (1), (2S)-7-hydroxy-3',4'-methylenedioxideflavan (2), sitostenone (3), protocatechuic acid (4), 4-hydroxybenzoic acid (5) và vanillin (6). Trong 6 hợp chất phân lập có 1 và 3-6 là các hợp chất lần đầu tiên được báo cáo cho chi *Knema*.

Từ khóa: Knema saxatilis, flavonoid, phenolic acid, flavan, sterol.

^{*}Tác giả liên hệ chính. Email: lethanh@imbc.vast.vn, diepthilanphuong@qnu.edu.vn

Chemical constituents of stems of Knema saxatilis

Le Nguyen Thanh^{1,*}, Tran Huu Giap¹, Ha Thi Thoa¹, Vu Thi Hue¹, Nguyen Hoang Nam¹, Nguyen Quoc Vuong¹, Nguyen Thanh Cong², Diep Thi Lan Phuong^{3,*}

¹Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Vietnam ²Faculty of Pharmacy, Dai Nam University, Vietnam ³Faculty of Natural Sciences, Quy Nhon University, Vietnam

Received: 27/09/2022; Accepted: 13/12/2022; Published: 28/02/2023

ABSTRACT

Phytochemical study of *Knema saxatilis* stems led to the isolation of six known compounds. Their chemical structures were determined as 8-hydroxy eriodictyol (1), (2*S*)-7-hydroxy-3',4'-methylenedioxideflavan (2), sitostenone (3), protocatechuic acid (4), 4-hydroxybenzoic acid (5) and vanillin (6) using NMR and MS spectral data. Among the isolated compounds, compounds 1 and 3-6 were reported for the first time from the genus *Knema*.

Keywords: Knema saxatilis, flavonoid, phenolic acid, flavan, sterol.

1. INTRODUCTION

Knema saxatilis, locally called "Mau cho da", is a native plant in Vietnam with red resins in the bark, referred to the word "mau cho" in its local name. *Knema* species have been used in the traditional medicine for the treatment of skin diseases, sore throat pains and cancers.¹ Previous chemical studies of *Knema* species led to the isolation of phenol lipid derivatives, flavonoids, lignans, terpenes and sterols.²⁻⁷ Plants in this genus exhibited possessed a wide range of pharmacological effects such as anticancer, antidiabetic, antibacterial and anti-inflammatory activities.²⁻⁷

In the continuation of our study on *Knema* plants in Vietnam,⁸⁻¹² we reported herein the isolation and elucidation of six compounds including 8-hydroxy eridictyol (1),

(2*S*)-7-hydroxy-3',4'-methylene- dioxideflavan (2), sitostenone (3), protocatechuic acid (4), 4-hydroxybenzoic acid (5), and vanillin (6). Their structures were determined by comparison of their NMR and MS spectral data with the reported literature.

2. MATERIALS AND METHODS

2.1. Plant materials

The plant stems were collected in Quangtri province, Vietnam in 2015. The plant was identified as *Knema saxatilis* de Wilde by Dr. Nguyen Quoc Binh, Vietnam Museum of Nature. A voucher specimen (VN-1672) was preserved at the Institute of Marine Biochemistry, VAST.

2.2. General experimental procedures

The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were obtained by a Bruker AM500

^{*}Corresponding authors.

Email: lethanh@imbc.vast.vn, diepthilanphuong@qnu.edu.vn

FT-NMR spectrometer using TMS as an internal standard and chemical shift are expressed in ppm. The ESI-MS spectra were recorded on an Agilent 1260 LC/MS system. Column chromatography (CC) was carried out on silica gel (Merck, 230-400 mesh) or Sephadex® LH-20. Thin layer chromatography used precoated silica gel plates (Merck 60 F_{254}). Compounds were visualized by UV lamp (254 nm) or spraying with 10% sulfuric acid and heating.

2.3. Extraction and isolation

The dried, powdered plant materials of *K*. *saxatilis* (1.12 kg) were consecutively macerated (3L x 3 times, 1 day/time) with hexane, ethyl acetate and MeOH at room temperature. The organic extracts were combined and removed *in vacuo* to afford hexane (5 g), ethyl acetate (14.2 g) and MeOH residue (53 g), respectively.

The hexane and EtOAc residue (19 g) was subjected to a silica gel CC (4 cm size) and eluted using gradient solvents hexane/EtOAc (100:1 to 0:1, v/v) to afford 8 fractions (F1-F8). Fraction F2 (370 mg) was fractionated on silica gel CC (2 cm size), eluted with hexane/EtOAc (19:1, v/v) to afford three sub-fraction F2.1-F2.3. Subfraction F2.1 (80 mg) was purified by silica gel CC (1.5 cm size), eluted with hexane/CH₂Cl₂ to give 3 (7 mg). Fraction F5 (830 mg) was separated on silica gel CC (2.5 cm size) using hexane/ EtOAc (19:1, v/v) as eluent to give five fractions F5.1-F.5.5. Fraction F5.1 (70 mg) was purified on silica gel CC (1.5 cm size) and eluted with CH₂Cl₂/MeOH (99/1, v/v) to yield 2 (3.5 mg). Fraction F5.2 (150 mg) was separated on silica gel CC (2 cm size), eluted with hexane/ EtOAc (19:1, v/v) to afford four sub-fractions F5.2.1-F5.2.4. Sub-fraction F5.2.3 (30 mg) was further purified on silica gel CC (1 cm size) and eluted with CH₂Cl₂/MeOH (99/1, v/v) to yield 6 (4 mg). Fraction F7 (260 mg) was separated on Sephadex® LH-20 CC (2 cm size) using $CH_2Cl_2/MeOH$ (2/8, v/v) as eluent to give four fraction F7.1-F7.4. Fraction F7.4 (15 mg) was purified on silica gel CC (1 cm size) and eluted with $CH_2Cl_2/MeOH$ (99/1, v/v) to yield **5** (4 mg).

The MeOH residue (53 g) was fractionated on silica gel CC (4 cm size) and eluted using gradient solvents $CH_2Cl_2/MeOH$ (100/1 to 0/1, v/v) to afford 12 fractions M1-M12. Fraction M6 (1.7 g) was purified on Sephadex[®] LH-20 (2.5 cm size) eluted with $CH_2Cl_2/MeOH$ (1/9, v/v) to afford four sub-fraction M6.1-M6.4. Fraction M6.2 (110 mg) was purified on Sephadex[®] LH-20 CC (1.5 cm size) using $CH_2Cl_2/MeOH$ (2/8, v/v) to give 4 (13 mg). Fraction M6.3 (70 mg) was separated on silica gel CC (1.5 cm size), eluted with $CH_2Cl_2/acetone$ (8/2, v/v) to yield 1 (5 mg).

8-Hydroxy eriodictyol (1) white solid, $[\alpha]_{D}^{25} -50^{\circ}$ (*c* 0.3, MeOH); ESI-MS: *m/z* 305 $[M+H]^+$. ¹H-NMR (500 MHz, CDCl₃+ CD₃OD) δ (ppm): 6.94 (1H, d, J = 2.0 Hz, H-2'), 6.85 (1H, d, J = 8.0 Hz, H-5'), 6.81 (1H, dd, J = 2.0 Hz, 8.0 Hz, H-6'), 5.97 (1H, s, H-6), 5.27 (1H, dd, J = 12.5 Hz, 3.0 Hz, H-2), 3.06 (1H, dd, J = 17.0 Hz, 12.5 Hz, H-3a), 2.73 (1H, dd, J = 17.0 Hz, 3.0 Hz, H-3b). ¹³C-NMR (125 MHz, CDCl₃+ CD₃OD) δ (ppm): 196.2 (C-4), 166.9 (C-7), 163.7 (C-9), 163.3 (C-5), 145.3 (C-4'), 144.9 (C-3'), 130.4 (C-1'), 126.0 (C-8), 118.5 (C-6'), 115.3 (C-5'), 113.5 (C-2'), 102.5 (C-10), 96.6 (C-6), 79.1 (C-2), 43.1 (C-3).

(2 *S*) - 7 - h y d r o x y - 3 ', 4 ' methylenedioxideflavan (2) white solid, $[\alpha]^{25}_{D}$: -14.2 (c 0.4; CHCl₃). ESI-MS: *m/z* 271 [M+H]⁺. ¹H-NMR (500MHz, CDCl₃), δ (ppm): 6.92 (1H, d, *J* = 8.0 Hz, H-5), 6.91 (1H, s, H-2'), 6.87 (1H, d, *J* = 8.5 Hz, H-6'), 6.81 (1H, d, *J* = 8.5 Hz, H-5'), 6.39 (1H, d, 8.0 Hz H-6), 6.38 (1H, s, H-8), 5.95 (1H, s, H-7'), 4.95 (1H, dd, *J* = 10 Hz, H-2), 2.88 and 2.70 (2H, m, H-4), 2.13 and 2.03 (2H, m, H-3).¹³C-NMR (125 MHz, CDCl₃) δ (ppm): 155.8 (C-9), 154.9 (C-7), 147.7 (C-3'), 147.2 (C-4'), 135.6 (C-1'), 130.1 (C-5), 119.6 (C-6'), 114.1 (C-10), 108.2 (C-5'), 108.0 (C-6), 106.7 (C-2'), 103.5 (C-8), 101.1 (C-7'), 77.8 (C-2), 30.0 (C-4), 24.4 (C-3).

Sitostenone (3) white solid. ESI-MS m/z 413 [M+H]⁺. ¹H-NMR (500MHz, CDCl₃), δ (ppm): 5.72 (1H, s, H-40), 1.17 (3H, s, H-19), 0.91 (3H, d, J = 6.5 Hz, H-21), 0.84 (3H, t, J = 7.5 Hz, H-29), 0.83 (3H, d, J = 7.0 Hz, H-27), 0.81 (3H, d, J = 7.0 Hz, H-26), 0.70 (3H, s, H-18). ¹³C-NMR (125 MHz, CDCl₃), δ (ppm): 199.6 (C-3), 171.7 (C-5), 123.7 (C-4), 56.0 (C-14), 55.9 (C-17), 53.8 (C-9), 45.9 (C-24), 42.4 (C-13), 39.6 (C-12), 38.6 (C-10), 36.1 (C-20), 35.7 (C-1), 35.6 (C-8), 34.0 (C-2), 33.9 (C-22), 33.0 (C-6), 32.1 (C-7), 29.2 (C-25), 28.2 (C-16), 26.1 (C-23), 24.2 (C-15), 23.1 (C-28), 21.0 (C-11), 19.8 (C-26), 19.0 (C-27), 18.7 (C-21), 17.4 (C-19), 12.0 (C-29), 11.9 (C-18).

Protocatechuic acid (4): brown solid. ESI-MS *m/z* 155 [M+H]⁺. ¹H-NMR (500MHz, CDCl₃+ CD₃OD), δ (ppm): 7.41 (1H, d, *J* = 1.5 Hz, H-2), 7.41 (1H, dd, *J* = 8.5 Hz, *J* =1.5 Hz, H-6), 6.76 (1H, d, *J* = 8.5 Hz, H-5). ¹³C-NMR (125 MHz, CDCl₃+ CD₃OD), δ (ppm): 169.4 (COOH); 149.6 (C-4); 144.0 (C-3), 123.2 (C-1), 121.6 (C-6); 116.4 (C-5); 114.5 (C-2).

4-Hydroxybenzoic acid (5): brown solid. ESI-MS *m/z* 139 [M+H]⁺. ¹H-NMR (500MHz, CD₃OD), δ (ppm): 7.85 (2H, d, *J* = 8.5 Hz, H-2, H-6), 6.76 (2H, d, *J* = 8.5 Hz, H-3, H-5). ¹³C-NMR (125 MHz, CD₃OD), δ (ppm): 169.9 (COOH), 163.1 (C-4), 133.0 (C-2, C-6), 122.6 (C-1), 116.0 (C-3, C-5).

Vanillin (6): pale yellow solid. ESI-MS m/z 153 [M+H]⁺. ¹H-NMR (500 MHz, CDCl₃) δ (ppm): 9.83 (1H, s, CHO), 7.43 (2H, m, H-2, H-6), 7.04 (1H, d, J = 8.5 Hz, H-5), 6.26 (1H, OH), 3.97 (3H, s, OMe). ¹³C-NMR (125 MHz, CDCl₃), δ (ppm): 190.8 (CHO), 151.8 (C-3),

147.2 (C-4), 129.8 (C-1), 127.4 (C-6), 114.4 (C-5), 108.8 (C-2), 56.0 (OMe).

3. RESULTS AND DISCUSSION

Compound 1 was isolated as a white solid. The ESI-MS spectrum revealed a pseudo-molecular ion peak at m/z 305 [M+H]⁺, suggested the molecular formula of 1 is $C_{15}H_{12}O_7$ (M= 304). The ¹H NMR spectrum showed signals of a flavanone structure with three protons of an ABX system at $\delta_{\rm H}$ 6.94 (1H, d, J = 2.0 Hz, H-2'), 6.85 (1H, d, J = 8.0 Hz, H-5'), 6.81 (1H, dd, J = 2.0 Hz,8.0 Hz, H-6'), an aromatic singlet at $\delta_{\rm H}$ 5.97 (1H, s, H-6). In addition, signals of benzopyranone moiety were observed with a signal at $\delta_{\rm H}$ 5.27 (1H, dd, *J* = 12.5 Hz, 3.0 Hz, H-2) and 2 protons at $\delta_{\rm H} 3.06$ (1H, dd, J = 17.0 Hz, 12.5 Hz, H-3a) and 2.73 (1H, dd, J = 17.0 Hz, 3.0 Hz, H-3b). The ¹³C-NMR showed 15 carbon signals of a flavanone including a carbonyl carbon at δ_{c} 196.2 (C-4), 12 aromatic carbons ranging from 166.9 to 96.6 ppm, an oxymethine carbon at $\delta_{\rm C}$ 79.1 (C-2) and a methylene group at $\delta_{\rm C}$ 43.1 (C-3). In the HMBC spectrum, the correlations of H-6 $(\delta_{\rm H} 5.97)$ to C-7 $(\delta_{\rm C} 166.9)$, C-5 $(\delta_{\rm C} 163.3)$ and C-10 ($\delta_{\rm C}$ 102.5) were observed, suggested a hydroxyl group was substituted at C-8 (Fig. 2). Based on above spectral evidences, compound 1 was identified as 8-hydroxy eriodictyol. The analytical NMR data of 1 are in accordance with those published.13

Compound **2** was obtained as a white solid. The ESI-MS showed a protonated molecular ion peak *m/z* 271 [M+H]⁺, corresponding to $C_{16}H_{14}O_4$ (M= 270) molecular formula. The ¹H NMR spectrum revealed signals of a flavan structure with signal of two ABX systems at δ_H 6.91 (1H, s, H-2'), 6.87 (1H, d, *J* = 8.5 Hz, H-6'), 6.81 (1H, d, *J* = 8.5 Hz, H-5') and 6.92 (1H, d, *J* = 8.0 Hz, H-5), 6.39 (1H, d, 8.0 Hz H-6), 6.38 (1H, s, H-8), a methylenedioxide group at δ_H 5.95 (1H, s, H-7')

Figure 1. Chemical structures of isolated compounds 1-6 from K. saxatilis stems.

and signals of pyrane ring at $\delta_{\rm H}$ 4.95 (1H, dd, J = 10 Hz, H-2), 2.88 and 2.70 (2H, m, H-4), 2.13 and 2.03 (2H, m, H-3). The ¹³C-NMR showed 16 carbon signals of a flavan including 12 aromatic carbons ranging from 155.9 to 103.5 ppm, an methylenedioxide carbon at δ_{c} 101.1 (C-7′) and 3 signals at $\delta_{\rm C}$ 77.8 (C-2), 30.0 (C-4) and 24.4 (C-3). In the HMBC spectrum, the correlations of H-7' to C-3' and C-4'; H-3, H-6, H-8 to C-10 were observed (Fig. 2). Compound 2 was determined as (2S)-7-hydroxy-3',4'methylenedioxideflavan by comparision of NMR and optical rotation data with those reported in the literature.¹⁴⁻¹⁵ Compound 2 has been isolated from K. pachycarpa¹⁶ and K. laurina stem barks.17

Figure 2. Key HMBC correlations of compound 1-2.

Compound **3** was obtained as a white solid, The ESI-MS spectrum exhibited a protonated ion at m/z 413 [M+H]⁺, corresponding to $C_{29}H_{48}O$ (M = 412) molecular formula. The ¹H-NMR spectrum showed characteristic signals of a steroid with 6 methyl group including 2 singlets at $\delta_{\rm H}$ 1.17 (3H, s, H-19), 0.70 (3H, s, H-18), 3 doublets at $\delta_{\rm H}$ 0.91 (3H, d, J = 6.5 Hz, H-21), 0.83 (3H, d, J = 7.0 Hz, H-27) and 0.81 (3H, d, J = 7.0 Hz, H-26) and a triplet at $\delta_{\rm H}$ 0.84 (3H, t, J = 7.5 Hz, H-29), an olefinic proton at $\delta_{\rm H}$ 5.71 (1H, s, H-4). The ¹³C-NMR showed 29 carbon signals including 6 methyl groups at $\delta_{\rm C}$ 19.8, 19.0, 18.7, 17.4, 12.0, 11.9 (C-26, C-27, C-21, C-19, C-29, C-18); a carbonyl signal at $\delta_{\rm C}$ 199.6 (C-3) and 2 olefinic carbons at $\delta_{\rm C}$ 171.6 (C-5) and 123.7 (C-4). Compound **3** was identified as stigmast-4en-3-one or sitostenone.¹⁸

Compound 4 was isolated as a brown solid. The ESI-MS spectrum exhibited a protonated molecular ion peak at m/z 155 [M+H]⁺ corresponding to the molecular formula of C₇H₆O₄ (M = 154). The ¹H NMR spectrum revealed signals of an ABX system with 3 protons at $\delta_{\rm H}$ 7.41 (1H, d, J = 1.5 Hz, H-2), 7.41 (1H, dd, J = 1.5 Hz, J = 8.5 Hz, H-6), 6.76 (1H, d, J = 8.5 Hz, H-5). The ¹³C-NMR showed 7 carbon signals with a carboxylic signal at $\delta_{\rm C}$ 169.4 (COOH) and six aromatic carbons. Comparing NMR spectral data,¹⁹ 4 was determined as protocatechuic acid.

Compound 5 was isolated as a brown solid. The ESI-MS spectrum showed a pseudo-molecular ion peak at m/z 139 [M+H]⁺ suggested

the molecular formula of 1 is $C_7H_6O_3$ (M= 138). The ¹H NMR spectrum displayed signals of an A_2B_2 system with 4 protons at δ_H 7.85 (2H, d, J = 8.5 Hz, H-2, H-6), 6.76 (2H, d, J = 8.5 Hz, H-3, H-5). The ¹³C-NMR also showed 7 carbon signals with a carboxylic signal at δ_C 169.9 (COOH) and six aromatic carbons. Compound 5 was assigned as 4-hydroxybenzoic acid by comparison of NMR data with those reported in the previous paper.¹⁹

Compound **6** was isolated as a pale yellow solid. The ESI-MS spectrum exhibited a protonated molecular ion peak at m/z 153 $[M+H]^+$ corresponding to the molecular formula of $C_8H_8O_3$ (M = 152). The ¹H NMR spectrum revealed signals of an aldehyde group at δ_H 9.83 (1H, s, CHO), 3 protons of an ABX system at δ_H 7.43 (2H, m, H-2, H-6), 7.04 (1H, d, J = 8.5Hz, H-5), and a methoxy group at δ_H 3.97 (3H, s, OMe). The ¹³C-NMR showed 8 carbon signals including a carbonyl carbon at δ_C 190.8 (CHO), six aromatic carbons and a methoxy group at δ_C 56.0 (OMe). Compound **6** was identified as vanillin by comparison NMR spectral data with published paper.²⁰

4. CONCLUSION

Six known compounds have been isolated and elucidated as 8-hydroxy eriodictyol (1), (2S)-7-hydroxy-3',4'-methylenedioxideflavan (2), sitostenone (3), protocatechuic acid (4), 4-hydroxybenzoic acid (5), and vanillin (6) from stems of *K. saxatilis* including. Compounds 1 and 3-6 were found for the first time from *Knema* genus.

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.01-2017.47.

REFERENCES

1. V. V. Chi. *Dictionary of Vietnamese medicinal plants*, Hanoi Medical Publisher, 2012.

- W. M. N. H. W. Salleh, F. Ahmad. Phytochemistry and biological activities of the genus Knema (Myristicaceae), *Pharmaceutical Sciences*, 2017, 23, 249-255.
- A. Zahir, A. Jossang, B. Bodo, H. A. Hadi, H. Schaller, T. Sevenet. Knerachelins A and B, antibacterial phenylacylphenols from Knema furfuracea, *Journal of Natural Products*, **1993**, 56(9), 1634-7.
- M. N. Akhtar, K. W. Lam, F. Abas, Maulidiani, S. Ahmad, S. A. A. Shah. New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights, *Bioorganic & Medicinal Chemistry Letters*, 2011, 21(13), 4097-103.
- Y. X. Zhang, Z. Lu, W. C. Wu, Y. G. Chen, R. Zhan. Bioactive Flavonoids from Knema elegans, *Phyto Chemistry Letters*, 2021, 42, 121-124.
- T. V. Pham, H. K. T. Bach, D. V. Ho, B. C. Nguyen. Chemical constituents from the Knema globularia fruits and their in vitro cytotoxicity, *Natural Product Research*, 2022, *36*, 256-262.
- T. K. D. Le, A. Danova, T. Aree, T. H. Duong, M. Koketsu, M. Ninomiya, Y. Samada, P. Kamsri, P. Pungpo, W. Chavasiri. α-Glucosidase inhibitors from the stems of Knema globularia, *Journal of Natural Products*, 2022, 85, 776-786.
- T. H. Tung, C. T. Hue, T. H. Giap, H. T. Thoa, N. A. Dung, N. T. M. Hang, N. V. Hung, L. N. Thanh. Lignans isolated from the ethyl acetate extract of Knema pachycarpa fruit, *Vietnam Journal of Chemistry*, 2017, 55, 406.
- T. H. Giap, T. T. Hoa, D. N. Thuc, N. T. M. Hang, N. V. Hung, N. Q. Chi, L. N. Thanh. Flavonoids from stems of Knema caxatilis de Wilde, *Pharmaceutical Journal*, 2018, 58, 62-64.
- T. H. Giap, H. T. Thoa, V. T. K. Oanh, N. T. M. Hang, N. H. Dang, D. N. Thuc, N. V. Hung, L. N. Thanh. New acetophenone and cardanol derivatives from Knema pachycarpa, *Natural Product Communication*, **2019**, *14*, 1934578X19850046.
- N. T. T. Oanh, P. T. T. Ha, T. H. Giap, V. T. K. Oanh, N. T. M. Hang, D. N. Thuc, D. Fedeli, S. Gabbianelli, P. T. Huong, N. V. Hung,

https://doi.org/10.52111/qnjs.2023.17103

36 | Quy Nhon University Journal of Science, 2023, 17(1), 31-37

L. N. Thanh. Chemical constituents and biological activities of the leaves of Knema saxatilis, *Chemistry of Natural Compounds*, **2021**, *57*, 355-359.

- T. H. Giap, P. M. Duc, N. V. The, M. Popova, V. Bankova, C. T. Hue, V. T. K. Oanh, N. T. M. Hang, N. V. Hung, T. N. Le. Chemical constituents and biological activities of the fruits of Knema pachycarpa de Wilde, *Natural Product Research*, 2021, 35, 455-464.
- A. R. Bilia, L. Ciampi, J. Mendez, I. Morelli. Phytochemical investigations of Licania genus. Flavonoids from Licania pyrifolia, *Pharmaceutica Acta Helvetiae*, **1996**, *71*, 199-204.
- S. Ghosal, S. K. Singh, R. S. Srivastava. Flavans from Zephyranthes flava, *Phytochemistry*, **1985**, *24*, 151-153.
- O. O. Oluyemisi, A. E. Oriabure, A. J. Adekunle, K. S. T. Ramsay, S. Shyyaula, M. I. Choudhary. Bioassay-guided isolation of Poliovirusinhibiting constituents from Zephyranthes candida, *Pharmaceutical Biology*, **2015**, *53*(6), 882-887.
- T. H. Giap, H. T. Thoa, C. T. Hue, N. T. T. Oanh, V. T. K. Oanh, N. T. M. Hang, N. V. Hung, N.

S. Mishchenko, S. A. Fedoreev, L. N. Thanh. Flavanes and fatty acids from bark of Knema pachycarpa de Wilde, *Pharmaceutical Journal*, **2017**, *57*, 33-36.

- M. J. G. Gonzalez, C. J. DeOliveira, J. Fernandes, A. Kijjoa, W. Herz. Further alkyl and alkenylphenols of Knema laurina and Knema austrosiamensis: location of the double bond in the alkenyl side chains, *Phytochemistry*, **1996**, *43*, 1333-1337.
- Q. Y. Wang, G. X. Cui, J. C. Wu, Y. G. Chen. Steroid from Trigonostemon heterophyllus, *Chemistry of Natural Compounds*, 2015, 51, 1196-1198.
- D. L. Vu, G. L. Pham, V. H. Hoang, T. P. Nguyen, Isolated compounds from leaves of *Leea rubra Blume* ex Spreng, *VNU Journal of Science: Medical and Pharmaceutical Sciences*, 2016, 32, 12-17.
- N. P. Hung, D. T. Thuy, D. N. Quang, N. A. Tuan, T. N. T. Vy, N. T. N. Yen, G. T. K. Lien. PTP1B inhibitory constituents from Gymnosporia Stylosa Pierre, *The University of Danang Journal* of Science and Technology, **2021**, 33-36.