KHOA HOC

TRUONG DAl HOC QUY NHON

4

o d 2 ” A 4 Y
Bat dang thuc kiéu Morrey cho cac ham
c6 gia tri trung binh bang 0
Nguyén Vin Thanh*, Nguyén Hiru Thuin, Nguyén Ping Thanh Giang,
D6 Phuong Oanh, Nguyén Thi Ha Tién, Poan Khinh Duy
Khoa Todn va Thong ké, Truong Dai hoc Quy Nhon, Viét Nam
Ngay nhan bai: 15/06/2022; Ngay nhan dang: 01/09/2022; Ngay zudt ban: 28/10/2022

TOM TAT

Trong bai bao nay, chiing t6i nghién cttu mot bat ding thiic kiéu Morrey cho cac ham Sobolev ¢6 gia tri
trung binh bing 0. Hing s6 dugc din ra & trong bai bdo nay 1a t6t hon so véi hing s6 hién cé trong mot s6
tai lieu. Sau dé, chiing toi nghién citu sau hon vé mot tng dung ctia bat dang thitc kiéu Morrey nay doi véi
su hoi tu yéu clia day nghiém ctia phuong trinh p-Laplace véi diéu kién bién Neumann khi p — oo.
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ABSTRACT

In the present article, we study a Morrey-type inequality for Sobolev functions of mean value zero. The

constant in our paper is smaller than the existing one in the literature. Then we study further an application

of the Morrey-type inequality for the weak convergence of solutions to p-Laplace equations with a Neumann

boundary condition as p — oo.
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1. INTRODUCTION

Let © be a bounded, smooth domain of R™. This
paper is concerned with a Morrey-type inequality
for Sobolev functions of mean value zero in Sobolev
space WHP(Q). As usual, Sobolev spaces consist
of LP functions whose weak derivatives belong to
Lebesgue spaces LP. These spaces provide one of the
most useful settings for the analysis of partial dif-
ferential equations. It is known that Sobolev spaces
equipped with the norm

lullwr@) = llullp + [ Vulp

are Banach spaces, where |[F|, := ([, |F|pdx)1/p.
For more details on Lebesgue and Sobolev spaces,
we refer to the books.

The well-known Morrey inequality in R" (see,
for example,1:3:56) states that if p > n then for all
v e WHP(R) and all z,y € R"

o) = o) < Cpale =2 ([ 9paz) "
1)

where C, ,, is a positive constant depending only on
p and n.

Now, let dq denote the distance function to the
boundary 0f2, that is

do(z) == yie%fﬂ lz —y|, x €.
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Taking an arbitrary y € 9 in (1) one arrives at
the following pointwise inequality, for all (z,v) €
Q x WP (Q),

[0(2)] < Cpon (da(2)) P IVUll,,  (2)

where ||-||, stands for the standard norm of L”(12).
Passing to the maximum value in the left-hand side
of (2) we arrive at the well-known Morrey-Sobolev
inequality

[Vlloe < CpmallVollp, Yo € WgP(Q),  (3)

where the constant C),, o depends only on p,n
and . The above inequality is devoted to Sobolev
functions vanishing on the boundary and useful for
studying partial differential equations involving a
Dirichlet boundary condition. The counterpart for
the Morrey-Sobolev inequality (3) for Sobolev func-
tions of mean value zero can be written as

[ulloe < Cpnal Vullp, (4)

for all Sobolev function u € W'P(Q2) of mean value
zero, that is, it satisfies [udz = 0.
Q

In7, the authors make use of this inequality (for
a smooth and convex domain Q) in studying lim-
its as p — oo of solutions to p-Laplace equations
coupled with a Neumann boundary condition.

Such a constant C), , o has been implicitly men-
tioned in® and explicitly given in® Lemma B.1.16
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(see also?). Finding a smaller constant for the
Morrey-type inequality (4) is an interesting issue.

In this short paper, we provide a better estimate
for the Morrey-type inequality (4) compared with
the constant given in® Lemma B.1.16. Furthermore,
its application in studying the weak convergence of
solutions to p-Laplace equations with a Neumann
boundary condition as p — oo is also considered in
detail.

The article is organized as follows. In section 2,
we give a new constant C' of the Morrey-type in-
equality (4) for Sobolev functions of mean value
zero. Then, in section 3, we derive the key bound
of the gradients of solutions to p-Laplace equations
coupled with a Neumann boundary condition. As
a consequence, we obtain the weak convergence of
solutions in Sobolev spaces as p — oo.

2. MORREY-TYPE INEQUALITY
FOR SOBOLEV FUNCTIONS OF
MEAN VALUE ZERO

Theorem 1. Let Q) be a Lipschitz and convex do-
main of R™ and p > n. Then every Sobolev function
u € WHP(Q) of mean value zero, i.e. fQ udzr = 0,
obeys the following inequality

dn+17n/p 11y (p_l)l—l/iﬂ
ullpe < oo, P = Vul|rr,
i € ) vl
(&)
where wy, % is the surface area of the

unit sphere in R™, T' is the gamma function, |Q|
is Lebesque measure of Q and d = diam(R2) is the

diameter of 2.

Proof. Set

dn«klfn/p —1 1-1/p
Cld,n,p) := —————w7/P p=2 .
n+1l—n/p p—n
We divide the proof into three steps.
Step 1. Fix any x € R". Let us prove that for any
R™-valued measurable function W € L*(R"™;R"™),
we have for all p > n

1
[ [ Wiz < W oo,
B(0.d) 0
(6)
where B(y, d) is the Euclidean ball of radius d and
center y in R™. To this aim, we make use of the
change of variables in polar coordinates by the bi-
jection @ : B(0,d)\ {0} — (0,d] x 9B(0,1) defined
as ®(z) = (r,2) = (|z\,§) More precisely, one

has

d
/ g(x)dz = / pnt / g(r=)dS (= )r. (7)
B(0,d) 0 9B(0,1)

1
Now applying (7) with g(z) = [|W(z + t2)||z|dt
0

on B(0,d) for the second line below, and g(z) :=
W (x + 2)||z|'™™ on B(0,r) for the fifth, we arrive

the following estimate

1
/ |W (z + tz)||z|dtdz

B(0,d) 0
d 1

:/r”*1 / /\W(z+tr2/)|rdtd5(z/)dr
0 8B(0,1) 0
d T

— [ / /\W(m+m’)|d¢d5(z’)dr (set 7 = rt)
0 2B(0,1) 0

|W (z + TZ’)|7’177LdS(ZI)de'I‘

Il
O"\&
<

3
L
\
\L
i
—

0 2B(0,1)

= [t / [W(z + 2)||2|" "dzdr

0 B(0,r)
4 1/p 1/q
< [t / [W(z + 2)"dz / |27~ dz dr.
0 B(0,r) B(0,r)
(®)

Here, for the last line, we used Holder’s inequality
; _ P

By r < d, observe that
1/p

/ |[W(z + 2)|Pdz

B(0,r)

< |NWller(B(o,a)-

On the other hand, using again (7) with g(z) =

|2|2(1=") we can compute explicitly

T

/ |z|q(17")dz:/7'"71 T‘I(l*")dS(z/)dT

B(0,r) 0 dB(0,1)
T
1—n
=w, [ TP Idr
0
w. 1-n p—1 p=n
= l—nn rp—1+1 f— wn rep—1
o1 T 1 p—n
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It follows that

1

/ |[W (z + tz)||z|dtdz

B(0,d) 0 Jy
—1 1/a _ p—n\1/q
P ) /r" ! (ri’*l) dr
-n
P 0

S ||W||LP(B(z7d)) (Wn
d
-1 1/q -
= HW”LP(B(@d)) (wn]%) /T Py
0

n

_ 1)1—1/17 dn+17n/p

P
= |W . n—— TR
WlLe (B (z,a) <‘*’ P—n n+1—n/p

Step 2. We are now in a position to show the as-
sertion of Theorem 1 for the case of smooth function
u. In this case, set

 JVu(z) ifrxeQ
W)= {0 if xR\ Q.

Since [, u(y)dy = 0, we get for any z € Q
uw) = 7 | (ula) ) ay
= ﬁ /Q /0 (Vu(z + tly — ),z — y))dtdy

1 1
S@/Q/o [Vulz + ty — o))l|z — yldedy
1
/ﬁvm+uy—@Mx—ma@

Following Step 1, we obtain

C(d,n,
%”WHLP(B(IJ))

C(d,n,
= %HVUHLMQM

which completes the proof for smooth functions.
Step 3. For the general case, we make use a smooth
approximation. Fix any v € WUHP(Q) satisfying
Jo udz = 0. Then there exists a sequence of smooth
functions u. of mean value zero such that u. con-
verges to u strongly in L™(2) (1 < m < oo) and
u. converges to u strongly in WHP(Q) as ¢ — 0.
Passing to the limit as e — 0, from the inequality

u(@)] <

1
L™ (Q) < ‘le HUEHLOC(Q)

1 C(d,n,p)
< | i Vel Lo

e |

we obtain

C(d,n,p)

1
lullLm @y < |92]= Q] ||V“HLP(Q)-

Letting m — oo we arrive to

C(d,n,p)

[ull Lo (@) < Q) IVull Lo q) »

which completes the proof. O
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Remark 2. The above Morrey-type inequality is in-
spired by the estimate (B.1.3) of® p. 556 for smooth
functions of mean value zero. However, it is worth
noting that the inequality given in Theorem 1 is a
little bit sharper than the one in® p. 556, where the
constant is explicitly stated by

dn+17n/p 1/p p— 1 1-1/p
=—w — .
Qn " p—n

3. APPLICATIONS

Give a Lipschitz and convex domain € of R™, we
consider limits as p — oo of solutions u, to the p-
Laplace problems coupled with a Neumann bound-
ary condition

—div (|Vu(2)[P~2Vu(z)) = f(z) inQ
|Vu(:v)|”_2@ =0 on 09Q2. ©)
o

For a fixed p > n, the equation (9) has unique so-
lution u, of mean value zero, that is [ wu,dz = 0.
This is a standard result in the field on calculus of
variations and partial differential equations. In fact,

consider the variational problem

P
min {/ [Vl dx — / uf dz}, (10)
u€Sp Q p Q

where S, := {u e Whr(Q): / udz = 0}. The cost
Jo

functional in (10) is lower semi-continuous, coercive
and strictly convex on the non-empty convex set
Sp. Therefore, there exists a unique minimizer wu,
to (10), which is also a weak solution of problem
(9), that is, it verifies

/ |V, |P~2Vu,.Vodr = / fodz, Yo € C=(Q).
Q Q ()
In this section, we are interested in studying the be-
havior of solutions u, as p — co. More precisely, we
will show that the sequence {u,} converges weakly
in Sobolev spaces to a 1-Lipschitz function u, as
P — 00.

3.1. Bound of the gradients

Our aim is to prove that the LP-norm of the gra-
dients Vu,, is bounded independently of all p > n+-1.

Lemma 3. Let u, be a unique solution to (9) with
Joupdx = 0. Then there exists a positive constant
C independent of p > n+ 1 such that

IVup|l 1n () < C#7 forall p>n+1. (12)
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Proof. As a consequence of Theorem 1, there exists
a positive constant Cgq independent of p > n + 1
such that

lull (@) < Ca IVull (o (13)
for all p > n + 1 and all Sobolev functions u €
WP(Q) of mean value zero, ie., [,udz = 0. In
particular, applying for u = u, we get

||“pHLoc(sz) < CQHVUPHLP(Q), for all p > n+ 1.
(14)
On the other hand, using (11) with ¢ = u,,, Holder’s
inequality and (14), we obtain

/Q|Vup|P dr = /qup dz < || fllr ) lupllLe )

< Callflley @ IVupllLr ) -
It follows that

[Vup| ey < Cv T forall p>n+1,

with C' := Cqllf||11(q) being independent of all
p>n+1. O
3.2. Weak convergence

As a consequence of the previous bound of the
gradients, we obtain uniform convergence of v, and
weak convergence of the gradients Vu,,.

Proposition 4. Let u, be a unique solution to
(9) with [, uydz = 0. Then, up to a subsequence,

u, converges uniformly on Q to a limit function
Uoo € WE2(Q) and Vu, — Vus, weakly in L™ ()
as p — oo for any 1 < m < co. Moreover, the limit

function us is 1-Lipschitz, that is,

|V (z)] <1 for a.e. in .
Proof. Fix any m > n. Let p* = % Using Holder’s
inequality with p* and ¢* satisfying ]%—Q—qi* =1and

Lemma 3, we obtain

IV etpll ( / |Vup|’“dx)
< (/ |Vup|mp*dx) v </ dx) n
Q Q

= ||Vup||LP(Q)|Q

1 _ 1
m p

11 1
m - p(p-1

<0

(15)
for all p > max{n + 1,m}, where C is a con-
stant independent of p from Lemma 3. Observe that
|Q|ﬁ7%Cﬁ — Q= as p — oo. Hence, the se-
quence of gradients Vu, is bounded in L™ () and
so is {u,} in WH™(Q) (u, is of mean value zero).

Therefore, up to a subsequence, u, converges uni-
formly on Q to a limit function u. and Vu, = Vi
weakly in L™(Q2) as p — oo. Obviously, the weak
convergence of Vu, also holds true in L™(2) for
any 1 < m < n. Finally, taking the limit as p — oo

in (15), we arrive to

[ Vitoo| " (16)

L™ (Q) < |Q

Letting m — oo we obtain ||Vuoo\|Loc(Q) < 1, which
completes the proof.
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