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 TÓM TẮT

Việc xây dựng các đặc tính và cấu trúc phân tử đóng một vai trò quan trọng trong nhiều lĩnh vực khác nhau, 
như khoa học vật liệu, cảm biến, công nghệ nano, thiết kế và khám phá thuốc. Tuy nhiên, việc xây dựng cấu trúc 
phân tử trên một tập dữ liệu thô, tập dữ liệu bị nhiễu và thiếu thông tin, là một nhiệm vụ đầy thách thức nhưng rất 
quan trọng. Thuật toán phân loại K-Nearest Neighbors (KNN) là một thuật toán lazy learning, có xu hướng tìm 
kiếm các điểm gần nhất cho một mục tiêu trong toàn bộ tập huấn luyện. Tuy nhiên, quá trình dự đoán của KNN 
khá mất thời gian. Trong khi thuật toán cây tìm kiếm K-Dimension (K-D tree) là một cây nhị phân đa chiều, có cấu 
trúc lưu trữ cụ thể để biểu diễn dữ liệu huấn luyện một cách hiệu quả về mặt thời gian. Từ các khía cạnh trên, trong 
bài báo này, chúng tôi đã thử nghiệm và đề xuất một phương pháp gọi là thuật toán cây tìm kiếm KNN-KD để xử 
lý tập dữ liệu thô về cấu trúc phân tử bằng cách kết hợp các ưu điểm của KNN và cây K-D.

Từ khóa: Xây dựng cấu trúc phân tử, học máy, cây tìm kiếm K-Dimension, K-Nearest neighbors.
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ABSTRACT

The construction of molecular properties plays a significant role in various fields, such as material science, 
sensors, nanotechnology, drug design, and more. However, the construction of molecular structures on a raw 
dataset, which is noisy and incomplete, is a challenging but crucial task. K-Nearest neighbor Classification (KNN) 
is a lazy learning classification algorithm with tendency to search the nearest neighbors for a target in the entire 
training set. Nevertheless, each step of KNN is quite time-consuming. In comparison, the K-Dimension tree (K-D 
tree) algorithm is a multi-dimensional binary tree, a specific storage structure for time-efficiently representing 
training data. To that respect, in this journal article, we conduct and propose a method called the KNN-KD tree 
algorithm to process a raw labeled dataset of the molecular properties by combining the advantages of the KNN 
and K-D tree.

Keywords: Construction of molecular structures, machine learning, K-Dimension tree, K-Nearest neighbors.
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1. INTRODUCTION

The construction of molecular structures is one of 
the widespread issues where various approaches 
are applied using traditional chemistry formulae 
or mathematic computations. However, the 
datasets collected in experiments are noisy 
and incomplete for reconstructing molecular 
structures. In this article, a raw chemical dataset 
of Chemistry and Mathematics in Phase Space 
(CHAMPS)1 is used to prove the performance 
of the geometric-based approximated machine 
learning model, namely the K-Dimension tree 
(K-D tree) in the construction of molecular 
structures. Significantly, this journal article will 
analyze, construct and visualize the molecular 

structures while we only use the XYZ coordinates 
of atoms for training the model. Consequently, 
this method can reduce the computing time 
with comparably high accuracy to rule-based 
methods.

1.1. Construction of molecular structures 

The construction of molecular structures is 
a typical issue in chemistry since it impacts 
biomedical engineering, drug discovery, and 
vaccine exploration. In the real scenario, much 
information on the molecular properties is noisy, 
incomplete, and deficient.2 As a demand, we 
need methods that improve the exploration of the 
molecular structures to deal with the shortage of 
information.
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Various approaches to constructing the 
molecular structures are applied with machine 
learning.3,4 However, the complexity of 
constructing the molecular structures increase 
significantly once the bonding schema is 
involved.3 One of the state-of-the-art methods 
which achieve high accuracy on the CHAMPS 
dataset is a hybrid approach, namely soft graph 
transformer by Bosch Corporate Research and 
Bosch Center for AI.5 This model processes 
the entire molecule one by one, simultaneously 
predicting each of the scalar couplings in the 
molecule. Instead of using a traditional graph 
model, their approach processes the data as a 
meta-graph where each atom, chemical and non-
chemical bonds, namely just pairs of atoms, are 
included in the model, and even triplets or quads 
all become nodes for the graph transformer. 
Distance measurement between all the nodes in 
the graph is necessarily defined to support the 
model. For example, atom-to-atom distances use 
the actual distance between atoms. In contrast, 
atom-to-bond distances use the minimum 
distance from the atom to the two atoms in the 
bond, with similar extensions for triplets quads. 
Some other methods apply the Bidirectional 
Encoder Representations from Transformers 
(BERT) training to extract only raw coordinates 
instead of distance, translational and rotational 
invariances, such as MTM6, Mol-BERT,7 BERT 
of Xin-Yu et al.8

Most other studies on molecular structures 
based on the CHAMP dataset have focused on 
predicting the scalar coupling constant without 
having a proper way to process and classify 
the bond information. Hence, the success rate 
of bond reconstruction is not good enough 
for further steps. Moreover, the running time 
of extracting information from coordinate 
files is time-consuming due to the enormous-
size dataset. Also, some approaches applying 
multiprocessing may yield incorrect data. For 
the above reasons, a high percentage of molecule 
structures are not constructed correctly, which 
leads to the fact that various models cannot 

improve the accuracy in predicting the scalar 
coupling constants. Consequently, there is a 
need to create an easily customed algorithm to 
improve the success rate of the construction of 
molecular structures.

1.2. K-Nearest neighbors algorithm 

K-Nearest Neighbors (KNN) algorithm is 
based on the distance metric function, namely 
Euclidean distance, to calculate the distance 
between the sample to be classified x and each 
sample in the training set, sort the calculated 
distance, and select the k training samples 
closest to the sample to be classified as the k 
nearest neighbors of x. If the sample belonging 
to a particular class of the k nearest neighbors 
is the majority, the representative classification 
sample x is classified into the category.9

1.3. K-D tree algorithm 

K-Dimension tree (K-D tree) is a binary 
tree structure that recursively partitions the 
parameter space along the data axes, splitting it 
into nested orthotropic regions into which data 
points are filed.10 K-D tree is a particular case 
of binary space partition trees. In detail, it is a 
space partitioning data structure for organizing 
points in a K-Dimensional space. A non-leaf 
node in the K-D tree divides the space into two 
parts, called half-spaces. Each subspace can be 
recursively divided in the same way. The left 
subtree of that node represents points to the left 
of this space, and the right subtree represents 
points to the right of the space. Constructing a 
K-D tree on a K-Dimension dataset represents a 
partition of the K-Dimensional space formed by 
the K-Dimensional dataset.

K-D trees are helpful in range searches 
and nearest neighbor searches.  They are the 
most powerful data structures for small and 
moderate numbers of dimensions up to 20 
dimensions.11 In general, structures of the K-D 
tree attempt to reduce the required number of 
distance calculations by efficiently encoding 
aggregate distance information for the sample. 
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The construction of a K-D tree is speedy since 
partitioning is conducted only along the data 
axes. Once built, the nearest neighbor of a query 
point can be determined with only distance 
computation. Nevertheless, the K-D tree method 
is high-speed for low-dimensional neighbor 
searches. It becomes ineffective as it grows 
tremendous. The primary reason is that the ratio 
of the volume of a unit sphere in K-dimensions 
falls exponentially compared to a unit cube in 
K-dimensions. Thus at an exponential rate, many 
cells have to be searched within a particular 
radius of a query point, say for a nearest-neighbor 
search. Additionally, the number of neighbors 
for any cell grows up and eventually becomes 
insurmountable.12 

1.4. Improved neighbor search algorithm 
using a K-D tree to find multiple k nearest 
neighbors (KNN-KD tree)

However, the nearest neighbor searching 
algorithm applied with the original K-D tree can 
only find one nearest neighbor. Consequently, it 
is necessary to adapt the original algorithm to be 
more efficient for searching the molecular data 
called KNN applied with the K-D tree (KNN-
KD tree).13,14 It can discover multiple K-nearest 
neighbors of a given query point instead of just 
finding one nearest neighbor. A bounded priority 
queue that stores the list of K-nearest neighbors 
together with their distances to the query point 
is applied in the adapted algorithm. The higher 
the priority value of the point is, the longer 
the distance from that point to the query point 
becomes. A fixed upper bound of the bounded 
priority queue must be defined, which is the 
number of nearest neighbors. The bound is used 
to prune tree searches, so if a series of K-nearest 
neighbor queries are required, it may help supply 
the distance to the nearest neighbor of the most 
recent point. Whenever a new point is added to 
the queue, if the queue is at capacity, the point 
with the longest distance to the query point is 
ejected from the queue.15

Figure 1. Bounded priority queue for KNN.

For example, Figure 1a shows the nearest 
neighbor priority queue with the upper-bounded 
size of five and holds five points, from A to E. 
Suppose that the next nearest neighbor point to 
be inserted into the priority queue is the point F 
with the priority of 0.4. Because the maximum 
size of the priority queue is five, point F is 
inserted into the priority queue. However, point 
E with the longest distance to the query point q is 
eliminated. Figure 1b shows the resulting priority 
queue after point F is inserted. On the other 
hand, suppose that the next nearest neighbor to 
be inserted into the priority queue is point G with 
a distance of 3.5. Because the distance value of 
G is greater than the maximum priority element 
in the queue, G is not inserted into the queue.

In conclusion, there are two improvements 
in the KNN-KD tree algorithm from the 
traditional K-D tree to improve search 
efficiency. The first improvement is that when 
determining whether to look on the opposite side 
of the splitting hyperplane, the algorithm applies 
the distance from the point with the longest 
distance in the nearest neighbor priority queue 
as the radius of the candidate hypersphere.16 The 
second improvement is that it reduces the time 
complexity from O(n) to O(n1-1/k+m).17 

2. DATASET AND RESEARCH METHOD

2.1. Dataset

Because the training and test splits are by 
molecule, no molecule in the training data will 
be found in the test data. The dataset contains 
these files as follows.

l train.csv The training dataset contained 
4,658,147 scalar coupling observations of 85,003 
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unique molecules. The first column (molecule_
name) is the molecule's name where the coupling 
constant originates. The second (atom_index_0) 
and the third column (atom_index_1) are the 
atom indices of the atom pair, creating the 
coupling. The fourth column (scalar_coupling_
constant) is the scalar coupling constant needed 
for predicting. All of the molecules contained 
five types of atoms: carbon (C), hydrogen (H), 
nitrogen (N), fluorine (F), and oxygen (O). There 
were eight distinct types of scalar coupling, 
including 1JHC, 1JHN, 2JHH, 2JHC, 2JHN, 
3JHH, 3JHC, and 3JHH, which means that the 
fluorine coupling is not presented in the dataset.

l test.csv The test set has the same 
information as the train set but without the target 
variable, namely the scalar coupling constant. 
Because scalar coupling constant contains 
information about relative bond distances and 
angles, which are informative in determining the 
connectivity between atoms in a molecule, scalar 
coupling constant is not available in the test 
dataset to evaluate whether the model is robust 
to it.18 The test dataset contained 2,505,542 
scalar coupling observations of 45,772 unique 
molecules.

l structures.csv contains the molecular 
structure XYZ information, where the first 
column (molecule_name) is the molecule's name, 
followed by the index of the atom (atom_index). 
The following column (atom) contains the atomic 
element symbols such as H for hydrogen, C for 
carbon, N for Nitrogen. The remaining columns 
include the X, Y, and Z cartesian coordinates.

l dipole_moments.csv contains the 
molecular electric dipole moments. These are 
three-dimensional vectors that indicate the 
charge distribution in the molecule. The first 
column (molecule_name) are molecule’s names; 
the second to the fourth column is the XYZ 
components of the dipole moment.

l magnetic_shielding_tensors.csv contains 
the magnetic shielding tensors for atoms in the 
molecules. The first column (molecule_name) is 

the molecule name, the second column (atom_
index) is the index of the atom in a molecule, the 
third to eleventh columns comprise the XX, YX, 
ZX, XY, YY, ZY, XZ, YZ, and ZZ elements of 
the tensor/matrix respectively.

l scalar_coupling_contributions.csv The 
scalar coupling constants in the train set (or 
corresponding files) are a sum of four terms. 
scalar_coupling_contributions.csv contains all 
these terms. The first column (molecule_name) 
is the name of the molecule. The second (atom_
index_0) and third column (atom_index_1) are 
the atom indices of the atom pair. The fourth 
column shows the type of coupling. The fifth 
column (fc) is the Fermi Contact contribution. 
The sixth column (sd) is the Spin-dipolar 
contribution. The seventh column (pso) is the 
Paramagnetic spin-orbit contribution. Finally, 
the eighth column (dso) is the Diamagnetic spin-
orbit contribution.

2.2. Proposed method

This journal article proposes to apply the 
K-Nearest Neighbour with the K-D tree (KNN-
KD tree) algorithm to solve the construction of 
molecular structures, where the knowledge of 
geometry and pattern matching is utilized.

Our KNN-KD tree algorithm is split into 
four main steps to reconstruct the molecular 
structures based on the bonding schema. Every 
molecule is selected and restored by four steps 
where the XYZ cartesian coordinate of atoms 
structure is applied in the K-D tree. Our method 
solves the three kinds of coupling types. 

In general, the bond length between the 
two atoms is approximately the sum of the 
covalent radii of the two atoms. Consequently, 
in the bonding reconstruction algorithm, the 
valence radii of the chemical elements are pre-
defined and applied. The covalent radius is the 
distance from the center of the nucleus to the 
outermost shell of the electron, and its value may 
be derived from experimental measurements or 
calculated by theoretical models.6 However, 
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these relationships are certainly not accurate 
due to the inconstant size of an atom but depend 
on its chemical environment.19 For example, in 
the heteroatomic A-B bonds, ionic terms may 
enter.20 Furthermore, the differential value of 
single, double, and triple bonds are too small to 
distinguish based on the distance values derived 
from the XYZ cartesian coordinate of atoms in 
the dataset. Consequently, in our algorithm, only 
the single bond covalent radius is manipulated to 
create the general bonding schema.

2.2.1. Single bond connect reconstruction

To successfully reconstruct the total bonding 
system, firstly, the overall molecular bonding 
structure must be created. The background of 
single bond connect reconstruction is based 
on the bond length comparison. In detail, each 
time, a pair of XYZ cartesian coordinates of two 
atoms in a specific molecule is put into the K-D 
tree structure in the three-dimensional geometry. 
To be more easily understandable, a random 
molecule, dsgdb9nsd_000007, is analyzed.

Table 1. The XYZ cartesian coordinate of the 
molecule dsgdb9nsd_000007

index atom x y z

0 C -0.0187 1.5256 0.0104

1 C 0.0021 -0.0039 0.0019

2 H 0.9949 1.9397 0.0029

3 H -0.5421 1.9236 -0.8651

4 H -0.5252 1.9142 0.9000

5 H 0.5255 -0.4019 0.8775

6 H -1.0115 -0.418 0.0095

7 H 0.5086 -0.3924 -0.8876

Table 1 shows that the molecule 
dsgdb9nsd_000007 has eight atoms inside, which 
is two carbon atom and six hydrogen atoms. With 
the XYZ cartesian coordinate, it is easy to outline 
the position of every atom inside the molecule in 
the three-dimensional geometry, as illustrated in 

Figure 2. Still, there is no connection between 
these atoms in the dataset, namely the bonding 
schema. The approach is to search for all possible 
connections to create single chemical bondings 
from an atom to others. Since the valence of 
each atom is not provided, the standard valence 
is used as the default value. Also, any atom 
with zero available bonding is rejected. With 
the molecule dsgdb9nsd_000007, the algorithm 
starts with the first atom of hydrogen because the 
processing order beginning with the hydrogen 
avoids a butadiene-like molecule. 

Based on the K-D tree query, the nearest 
atom is chosen by distance. At first, the K-D 
tree finds the nearest atom to a selected atom. 
For the spatiotemporal interpolation for the 
dsgdb9nsd_000007 data, a three-dimensional 
K-D tree has been constructed to find the 
K-nearest neighbors. Figure 3 illustrates the 
K-D tree built from eight atomic points of 
dsgdb9nsd_000007 data alongside its index. 
Atom C at i=1 is the root point because it is the 
median point on the x-axis and splits the atomic 
points dataset into two groups. The first left 
branch group with points whose x-axis values are 
less than or equal to the atomic root point xC[1]. 
While the other right branch group with points 
whose x-axis value is greater than xC[1]. The split 
at the atomic root point is visualized in Figure 4. 
The red line is the splitting line according to the 
x-axis. 

Figure 2.  Eight atoms of the molecule dsgdb9nsd_000007 
in the XYZ cartesian coordinate system.
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Then, to continue building the K-D tree 
for the molecule dsgdb9nsd_000007, recursively 
build the K-D tree in the right and the left half-
space in Figure 4 by splitting at the atomic 
point hydrogen (i=7) of the right half-space 
and hydrogen (i=4) of the left half-space. The 
reason is that both mentioned atomic points are 
the median point according to the y-axis, and 
splitting remained atomic data point horizontally 
through it. Continuing partition recursively to 
completion will result in the entirely constructed 
K-D tree, as illustrated in Figure 5. The blue line 
is the splitting line according to the y-axis, while 
the green line is the splitting line according to 
the z-axis.

From the entirely constructed K-D tree, 
the K-D tree query has been implemented to 
get the array list of ordered atoms index relying 
on the distance from the selected atom point. 
Since the ordered atoms list of the molecule 
dsgdb9nsd_000007 is: [‘H’, ‘H’, ‘H’, ‘H’, ‘H’, 
‘H’, ‘C’, ‘C’], we start with the atom H at i=2. 
For each atom, the K-D tree query returns the 
nearest neighbor according to the distance. Based 
on the entirely constructed K-D tree structure in 
Figure 5, the atom C at i=1 (C[1]) as the root 
is taken as an example. Atom C[1] becomes the 
query point in the K-D tree structure. The C[1] 
query point continually traverses all nodes inside 
its branch then creates its sphere where the radius 

is the distance from C[1] to the current nearest 
node. Next, we check whether the sphere crosses 
any coordinate axis, backtrack to the intersected 
branch, and measure the distance to find the more 
current nearest node. We repeatedly measure, 
create the new sphere, and check the intersected 
area until the nearest node is found. In this case 
of C[1], the atom hydrogen with i=6 (H[6]) 
becomes the nearest neighbor, which is shown 
in Figure 6. The distance from C[1] to H[6] is 
1.09495347.

Figure 4. Visualization of splitting the atomic points 
into two groups according to the x-axis at atom C 
(i=1).

After finding out H[6] as the nearest node 
of C[1], if there is no bond yet between those 
two atoms and the connection between them 
certainly exists once, the algorithm continues to 
compare the calculated distance between them to 
the predicted bonding distance. In addition, the 
number of nearest nodes taken into consideration 
is based on the valence of the element. If the 
valence value is larger than the number of atoms 
in a specific molecule, the maximum number 
of atoms is used. For example, the valence of C 
is 4, and then the four nearest nodes are taken to 
measure the distance. 

 

6 

 

atomic root point xC[1]. While the other right 
branch group with points whose x-axis value is 
greater than xC[1]. The split at the atomic root 
point is visualized in Figure 4. The red line is the 
splitting line according to the x-axis.  

 
Figure 2. Eight atoms of the molecule 
dsgdb9nsd_000007 in the XYZ cartesian coordinate 
system. 

 

 
Then, to continue building the K-D tree for 

the molecule dsgdb9nsd_000007, recursively 
build the K-D tree in the right and the left half-
space in Figure 4 by splitting at the atomic point 
hydrogen (i=7) of the right half-space and 
hydrogen (i=4) of the left half-space. The reason 
is that both mentioned atomic points are the 
median point according to the y-axis, and 
splitting remained atomic data point horizontally 
through it. Continuing partition recursively to 
completion will result in the entirely constructed 
K-D tree, as illustrated in Figure 5. The blue line 
is the splitting line according to the y-axis, while 
the green line is the splitting line according to the 
z-axis. 

From the entirely constructed K-D tree, the 
K-D tree query has been implemented to get the 
array list of ordered atoms index relying on the 
distance from the selected atom point. Since the 
ordered atoms list of the molecule 
dsgdb9nsd_000007 is: [‘H’, ‘H’, ‘H’, ‘H’, ‘H’, 
‘H’, ‘C’, ‘C’], we start with the atom H at i=2. 
For each atom, the K-D tree query returns the 
nearest neighbor according to the distance. Based 

on the entirely constructed K-D tree structure in 
Figure 5, the atom C at i=1 (C[1]) as the root is 
taken as an example. Atom C[1] becomes the 
query point in the K-D tree structure. The C[1] 
query point continually traverses all nodes inside 
its branch then creates its sphere where the radius 
is the distance from C[1] to the current nearest 
node. Next, we check whether the sphere crosses 
any coordinate axis, backtrack to the intersected 
branch, and measure the distance to find the more 
current nearest node. We repeatedly measure, 
create the new sphere, and check the intersected 
area until the nearest node is found. In this case 
of C[1], the atom hydrogen with i=6 (H[6]) 
becomes the nearest neighbor, which is shown in 
Figure 6. The distance from C[1] to H[6] is 
1.09495347. 

 

Figure 4. Visualization of splitting the atomic points 
into two groups according to the x-axis at atom C 
(i=1). 

After finding out H[6] as the nearest node 
of C[1], if there is no bond yet between those two 
atoms and the connection between them certainly 
exists once, the algorithm continues to compare 
the calculated distance between them to the 
predicted bonding distance. In addition, the 
number of nearest nodes taken into consideration 
is based on the valence of the element. If the 
valence value is larger than the number of atoms 
in a specific molecule, the maximum number of 
atoms is used. For example, the valence of C is 4, 
and then the four nearest nodes are taken to 
measure the distance.  

(0.002, -0.003, 0.001) 

(-0.001, 1.5, 0.01) (-0.6, -0.39, -0.89) 

(-1.01,  
-0.42, 0.01) 

(-0.53, 
1.91, 0.9) 

(0.5, -0.4, 
0.88) 

(1, 1.9, 0.003) 

(-0.54, 1.92, -0.86) 

C[0] 

C[1] 

H[7] 

H[6] H[4] H[5] H[2] 

H[3] 

Figure 3. Visualization of the K-D tree structure 
constructed from 8 atomic points. Each square 
contains the XYZ cartesian coordinate with its 
atom[index]. 

Figure 3. Visualization of the K-D tree structure 
constructed from 8 atomic points. Each square 
contains the XYZ cartesian coordinate with its 
atom[index].



78

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

https://doi.org/10.52111/qnjs.2022.16305
Quy Nhon University Journal of Science, 2022, 16(3), 71-85

Figure 5. An entirely constructed K-D tree applies to 
the molecule dsgdb9nsd_000007.

Figure 6. The nearest neighbor of atom C (i=1) is the 
atom H (i=6) with the dist=1.09495347.

The predicted bonding distance between 
them is measured as the sum of the bond length 
of each atom. In this case, only atoms with the 
measured distance in the 20% expected distance 
or closer are kept. Then, we check whether 
both atoms have remaining valence or not and 
continue decreasing the remaining valence and 
creating a new bond. If any of them has zero 
remaining valences, we mark both atoms as 
leaves. The function continues running until 
all nodes are marked as leaves. In the end, the 
molecule dsgdb9nsd_000007 is constructed 
as in Figure 7. Based on the fully bonding 

reconstructed structure of dsgdb9nsd_000007, it 
is relatively easy to figure out that the chemical 
formula is Ethane (C2H6), all connected by single 
bonds.

Figure 7.  Fully bonding reconstructed  dsgdb9nsd_000007 
molecule.

2.2.2. n-bond connect greedy reconstruction

After successfully reconstructing the single 
bonding, the next step is rebuilding n-bond 
connections. Even though there is a calculated 
table of bond length for the double bond and 
triple bond, the accuracy and the consistency of 
the bonding connection are low. For example, the 
C atom has various variations in CC bond lengths 
that can be reasonably explained on the basis of 
hybridization being the primary factor. When 
atoms with lone pairs are involved, it appears 
necessary to introduce electron delocalization 
effects.21 As a consequence, the bond length and 
bond angles do not provide a reliable measure of 
carbon hybridization. Any atom whose valence 
is greater than 1 can potentially share two or 
three pairs of electrons with another atom. The 
n-bond connect reconstruction is applied for 
any molecule having any remaining available 
valence, which is not yet connected to other 
atoms. The molecule dsgdb9nsd_000005 is 
a typical example for this case because after 
applying the single bond connect reconstruction, 
its total remaining available valence is 4. The 
structure data of molecule dsgdb9nsd_000005 
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are listed in Table 2. Both atom C and atom 
N have two remaining unconnected bonds. 
Especially, atom C is marked as a leaf due to its 
connection to atom H, which has zero valence.

The idea of solving the n-bond connection 
is to link the atoms by electron pair bonds 
until each atom has a full octet based on the 
Lewis structure for compounds. While there 
are remaining atoms marked as leaves with 
available valence, the algorithm will add as 
many bonds as possible between atoms having 
any available valence. Every atom is taken into 
consideration one by one. Until any of them has 
remaining valences, the algorithm will mark 
both atoms as leaves. The greedy algorithm is 
also applied to make a locally optimal choice at 
each stage. If any atoms still have a remaining 
available valence, the algorithm will check each 
key according to these bonding keys. Then, 
the bond will be added to as many as possible 
between a pair of atoms that have an available 
valence. With the greedy algorithm, it is possible 
to entirely reconstruct the double bond and triple 
bond of molecules. 

Table 2. The XYZ cartesian coordinate of the 
molecule dsgdb9nsd_000005.

index atom x y z

0 C -0.0133 1.1324 0.0082

1 N 0.0023 -0.0191 0.0019

2 H -0.0278 2.1989 0.0141

To better understand how the implemented 
algorithm works, there is a visualization 
of the bonding schema of the molecule 
dsgdb9nsd_000005. As can be seen from Figure 8, 
the bonding between atom C at i=0 (C[0]) and 
atom H at i=2 (H[2]) is colored black, which 
means the single bond. Since the H[2] is marked 
as a leaf, so does the C[0]. Next, the algorithm 
solves for the bonding between C[0] and atom 
nitrogen at i=1 (N[1]). After running the n-bond 
connect greedy reconstruction, the triple bond 
between C[0] and N[1] is constructed as the red 
line. All atoms in the molecule have no available 

valence left. Hence, the double bond and triple 
bond reconstruction algorithm is assumptively 
successful.

Figure 8. Fully bonding reconstructed dsgdb9nsd_000005 
molecule. The black line presents a single bond, and the 
red line presents the triple bond.

2.2.3. Ionized radical search

After successful n-bond reconstruction, there 
are still many molecules without the completed 
bonding structure due to the ionization. The 
possible ionized groups which can be formed 
from H, C, N, F, and O in the dataset are 
Carboxyle (COO-) and Ammoniumyl (NH3

+). 
The idea of searching ionic bonds is initially to 
look for covalent bonds with remaining valence 
on some atoms where these covalent bonds are 
processed n-bond connection. For example, 
to find the ionic group NH3

+, it is necessary to 
search for the disconnected NH3. However, for 
the ionic group COO-, we need to find the CO 
group with one available bond connected to an 
O atom. 

To better understand the radical ionic search 
algorithm, the molecule dsgdb9nsd_000271 is 
taken into consideration because it has both ionic 
group COO- and NH3

+ in its structure. After pre-
processing, the molecule dsgdb9nsd_000271 is 
identified as Alanine with the chemical formula 
C3H7NO2. After processing with the ionic radial 
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search algorithm, the structural result of the 
molecule dsgdb9nsd_000271 is visualized in 
Figure 9.

Figure 9. Fully bonding reconstructed dsgdb9nsd_000271 
(C3H7NO2) molecule. The black line presents the 
single bond, the green line presents the double bond, 
and the red line presents the triple bond.

2.2.4. Ring search

Besides reconstructing the bonding schema, 
the ring of atoms inside a particular molecule 
should be considered. The reason for identifying 
the chemical ring is to easily distinguish the 
correct chemical formula of a specific molecule. 
For instance, the molecule dsgdb9nsd_000017 
is one of the remarkable molecules containing 
a ring inside itself. The reason this molecule is 
more specific than the other is that the chemical 
formula formed from its atoms can be three 
different compounds. 

Table 3. The XYZ cartesian coordinate of the 
molecule dsgdb9nsd_000017.

index atom x y z

0 C 0.0153 1.4176 0.009

1 C 1.2648 0.6492 -0.0066

2 O -0.0002 -0.0077 0.002

3 H -0.3176 1.8859 0.9348

4 H -0.3353 1.8958 -0.9039

5 H 1.8324 0.5626 -0.9319

6 H 1.8501 0.5527 0.9068

The approach of the algorithm to identify 
the ring of a particular molecule and its order is 
to apply the network graph to search for a cycle 
graph. The minimum cycle basic algorithm 
supports this approach since searching for the 
chemical ring is equivalent to finding the minimal 
cycle basic in a graph where the graph is the 
bonding structure. It is a cycle basic for which 
the total weight, in other words, the length for an 
unweighted graph, of all the cycles is minimum. 
The graph is split into connected subgraphs. The 
idea behind the minimum cycle basic algorithm 
is to use an all-pairs shortest paths (APSP) 
algorithm as a subroutine. Then, Dijkstra’s 
algorithm is used for APSP computation. In other 
words, the graph of the bonding structure will be 
analyzed to find the shortest ring in a molecule.

Figure 10.  Fully bonding reconstructed dsgdb9nsd_000017 
molecule (C2H4O). The ring is between C, O, and C.

3. RESULTS AND DISCUSSION

3.1. Results

After we apply the KNN-KD tree algorithm in 
the construction of molecular structures, we get 
45772 unique molecules built from the test set 
and 85003 unique molecules built from the train 
set. After constructing the bonding type, there 
are 17 bonding types. 
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The number of built molecules is equal to 
the initial number of molecules in the dataset, 
which means it is likely that there is no failure 
in the reconstruction algorithm. However, there 
is a high possibility that some molecules are 
not correctly handled according to the order of 
atoms or the bonding types. That is why there 
should be a proper evaluation to determine 
the success rate of the bonds reconstruction 
algorithm.

To evaluate the success rate of our KNN-
KD tree algorithm, we propose to compare 
the output results to the result computed by 
OpenBabel, which is a chemical toolbox 
designed to search, analyze, convert, or store 
data from molecule modeling, chemistry, solid-
state materials, biochemistry, or related areas.22 
Besides that, we conduct another baseline to test 
the accuracy of the KNN-KD tree algorithm. 
The second evaluation is to calculate the bond 
type consistency based on the distribution of 
bond length.

3.1.1. Evaluate by pairwise comparison versus 
OpenBabel

The pairwise comparison is applied to evaluate 
the calculated bonding type related to the 
bonding distance between two atoms and 
whether they are significantly different from one 
another. A pairwise-comparison trial included a 
pair of scalar coupling with its bonding type and 
the bonding distance between atoms. We derive 
results from the OpenBabel toolbox with the 
CHAMPS dataset and compare them with results 
computed by our KNN-KD tree algorithm. Any 
pair having a different bond type or a significant 
difference in the distance value between two 
atoms is set as an error, which is considered to 
be larger than 0.01. 

Table 4 shows that there are 31927 scalar 
coupling observations of 2064 unique molecules 
marked as the error, which accounts for 2.4% 
of total processed molecules in the train set. At 
the same time, there are 17692 scalar coupling 
observations of 1150 unique molecules flagged 
as the error, which occupies around 2.5% of total 
processed molecules in the test set. 

Table 4. The comparison table between our method 
and OpenBabel.

Dataset Test set Train set

Unique molecule 45772 85003

Inconsistent unique 
molecule 1150 2064

Unconsistency percentage 2.5% 2.4%

3.1.2. Evaluate by bond type consistency  
distribution

Each bonding pair is grouped by its different 
bonding valence for both the train and test 
datasets. So, it is more understandable to 
analyze the distribution of bonding types over 
the distance between atoms. The computation of 
bond type consistency based on the bond length 
is applied. Each bonding pair is grouped by its 
different bonding valence for both the train and 
test datasets. So, it is more understandable to 
analyze the distribution of bonding types over 
the distance between atoms.

As can be seen from Figure 14, the 
train and test set match well for the relative 
distribution of bond length. The train and test 
should be the same for the prediction of the 
scalar coupling constant. The number of bonds 
also builds the distributions, which peak at a 
different bond distance. This is consistent with 
the expected behavior that the more bonds, the 
further distance between two atoms.
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Table 5. The successful rate of bond reconstruction 
according to coupling types

Dataset Coupling 
type

Running 
time

Successful 
rate

Train set

1JHC 111s 100.00%
1JHN 141s 100.00%
2JHC 241s 99.98%
2JHH 336s 100.00%
2JHN 379s 99.88%
3JHC 491s 99.97%
3JHH 600s 99.96%
3JHN 655s 99.94%

Test set

1JHC 702s 100.00%
1JHN 717s 100.00%
2JHC 768s 99.99%
2JHH 817s 100.00%
2JHN 839s 99.90%
3JHC 896s 99.98%
3JHH 951s 99.96%
3JHN 980s 99.96%

The distribution of the 1.0 CC, 2.0 CC, 
and 3.0 CC is a perfect example of very well 
separated distributions. Adding the COO- 
handling improved a lot of things by separating 
the previous 1.0 CO bimodal distribution into 
two well-defined peaks, one for 1.5 CO and 
the second for 1.0 CO. Consequently, some 
other bimodal distributions like 1.0 CN, which 
decreased in 6.5% of bonds, can be expected to 
be resolved the same way if needed. Based on 
the calculated distribution, the running time of 
the implemented algorithm, together with the 
success rate, can be derived in Table 5.

Figure 11. The diagram of bond length by atom pair and number of bonds. The line illustrates the distribution of 
each bond type in the train/test set.
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3.2. Discussion

Our results can be improved by applying other 
systems. The initial algorithm calculates the 
distance between atoms based on the XYZ 
cartesian system. However, according to some 
research, this representation is not stable. Each 
coupling pair is located at a different point in 
space, and two similar coupling sets would 
have significantly different XYZ positions. So, 
instead of using coordinates, another system is 
considered. In this system, initially, each pair 
of atoms is taken as two first core atoms. The 
distance of the center between each pair needs 
to be calculated. Then, all n-nearest atoms to 
the center, which exclude the first two atoms, 
are required. Any two closest atoms become 
the third and the fourth core atoms. Finally, the 
distances from four core atoms to the rest of the 
atoms and to the core atoms are calculated as 
well. By using this representation, each atom's 
position can be described by four distances from 
the core atoms. This representation is not only 
stable for rotation and transition but also suitable 
for pattern-matching. So, by taking a sequence 
of atoms together with describing each by four 
distances and atom type and looking up for the 
same pattern, we can find similar configurations 
and detect the scalar coupling constant.

4. CONCLUSION

This research of analyzing and visualizing the 
molecular properties based on the KNN-KD tree 
algorithm has confirmed that our method can 
successfully construct the structure of molecules 
with a comparable result to rule-based methods. 
The findings also revealed that taking some 
additional datasets into account can improve 
the success rate of constructing the  molecular 
structures, such as dipole interactions, magnetic 
shielding, and potential energy, Mulliken 
charges.23–25 With the benchmark studies, the 
advantages and disadvantages of some data 
structures, which are also used for distance 
calculation, are presented. With our KNN-KD 
tree algorithm in the construction of molecular 
structures, utilizing models to predict the scalar 

coupling constants has become much more 
straightforward and correct. These facts motivate 
us to conduct and investigate the relationship 
between atoms in a particular molecule in the 
future further. 

In conclusion, this research makes 
the following contributions: 1) proposing 
a geometric-based approximated machine 
learning model, namely the KNN-KD tree in 
the construction of molecular structures only 
with XYZ coordinates of atoms for training 
the model. Unlike other data structures for 
distance calculation, our method reduces the 
pre-processing time, single query time and 
computational resources in various essential 
chemistry fields such as biomedical engineering, 
drug discovery, and vaccine exploration. 2) 
visualizing the molecular structure based on the 
bonding schema, which was built by our KNN-
KD tree algorithm, to give a better understanding 
and representational figures. 3) leveraging 
the force field method in molecular modeling 
because it can be extended to estimate the forces 
and potential energy of a system of atoms.

Our future works concern a more in-depth 
analysis of particular mechanisms and new 
proposals to try different methods. Although the 
results of the proposed algorithm are reasonable, 
there is still room for improvement. There are 
some features and some additional datasets 
that are not accounted for that likely have a 
significant effect on each different bonding type. 
The algorithm may take dipole interactions, 
magnetic shielding, potential energy, and 
Mulliken charges into account to improve the 
accuracy.
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