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TOM TAT

Bai bao dé xuit mot phuong phap Newton chinh héa khong chinh xéc dé giai cac bai toan tbi wu khong
rang budc. Thuat toan dude dé xuit thude vao 16p Iuge do lap trong-ngoai. Thay vi gidi cac hé tuyén tinh
mot cach chinh xéac, céc chuong trinh gidi cdc hé tuyén tinh lap sé duge ap dung dé tim ra cac hudng tim
kiém xap xi. Ching t6i sé chitng minh ring thuat toin khong chinh x4c sé bdo toan tinh chat hoi tu dia
phuong nhanh ciia céc thudt toan chinh xac. Mot s6 thuc nghiem s6 sé duge thuyc hien dé chi ra nhimg diém
t6t clia thuat toan dugc dé xuat.

Tt khéa: T6i wu khong rang budc, phuong phdp Newton khong chinh xdc, chinh héa, chin sai s6 dia phuong
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ABSTRACT

This paper proposes an inexact regularized Newton method for solving unconstrained optimization

problems. The proposed algorithm belongs to the class of outer-inner iteration scheme. Instead of solving

exactly linear systems, iterative linear solver will be applied to find approximate search directions. We will

show that the inexact algorithm preserved the fast local convergence property of exact algorithms. Some

numerical experiments are also conducted to show the benefits of our proposed algorithm.

Keywords: Unconstrained optimization, inexact Newton method, regularization, local error bound.

1. INTRODUCTION

Let us consider the following unconstrained
minimization problem

win f(z), (1)
where f : R" — R is a twice differentiable
function. This type of problem has many ap-
plications in machine learning, engineering,
economics,. ..."? Let S be the solution set
of the problem (1). We may assume that
the minimization problem (1) has a local
solution z* € S. A conventional assump-
tion which is used when solving this prob-
lem is the second order sufficient condition
(SOSC), i.e., the Hessian matrix V2 f(z*) is
positive definite, see, e.g. Theorem 2.4 in?.
This assumption is very important because
it implies that z* is the unique local solu-
tion of (1). This is crucial for the fast lo-
cal convergence of Newton algorithm, see,
e.g. Theorem 3.5 in?. However, in practice,

this assumption is somewhat strict and it
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limits the applicability of numerical algo-
rithm. With the lack of this assumption, be-
havior of numerical methods can be very
bad and sometimes algorithms cannot work.
Recently, regularized optimization methods
emerge as good alternatives for resolving
problems of type (1), in both contexts of con-
vex optimization®?® and of nonconvex opti-
mization.%” The main idea of these regular-
ized methods is tend to solve a sequence of
regularized problem of the form

min () o= f() + Llle — ol (2)
where x;, is the iterate at iteration k, 6, > 0
is a regularization parameter. Instead of the
SOSC, in these papers, the authors assume
that the gradient of objective provides a lo-
cal error bound condition at some z* € S.
Such a condition means that the distance
from a point to the solution set of the prob-
lem S can be upper bounded by some term
related to the gradient at that point (see (10)
below).
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8 proposed a

Very recently, authors in
Newton method applied to the first order
optimality conditions of (2). This algorithm
belongs to the class of outer-inner iteration
scheme. The main role of outer iterations is

to compute a trial iterate x; such that

where Hj is an approximation of the Hes-
sian matrix V2f(x), x), is the current iter-
ate and 0 is updated at the beginning of
each iteration. If the trial iterate makes a
sufficient reduction on the objective function
Fy.(z}) and its gradient VFy(z;), it will be
set as the starting point of the next itera-
tion, i.e., xx11 = x; . If this is not the case,
a sequence of inner iterations for minimiz-
ing Fj, will be applied for obtaining a suffi-
cient reduction on Fj,(xy,1) and VEy(xpy1).
This outer-inner iterations are also applied
in the framework of constrained optimiza-
tion, see®!® for further reading. In both
outer and inner iterations, the main compu-
tational cost lies in solving exactly the linear
system (3). In practical applications where
the size of problems are very enormous, fac-
torizing a large matrix to solve such a lin-
ear system may take a long time to execute
the algorithm. To deal with this problem,
inxact Newton method has been proposed
for solving nonlinear equation' and uncon-
strained optimization.!” This method is also
applied in the framework of constrained op-
timization, e.g..'*1%19 However, in these pa-
pers, one still resorts to the second order suf-
ficient conditions for the fast local conver-
gence of their algorithms. In?’, the authors
proposed a regularized trust-region Newton
method for solving (1). In numerical experi-
ments, authors considered the possibility of
applying an inexact solver for solving sub-
problem which is somewhat similar to (3).
However, convergence analysis for their al-

gorithm in this inexact case has not been

studied.

In this paper, we will propose an inexact
regularied Newton method for solving prob-
lem (1). Our algorithm has the same vain of
outer-inner algorithm scheme as.® However,
instead of solving exactly linear systems at
each iteration which maybe too expensive,
we will introduce an application of inexact
method to their algorithm. In this case, the
tolerance of the inexactness will be consid-
ered carefully so that the fast convergence
of the algorithm is still preserved. In partic-
ular, at each iteration k, an inexact linear
solver, e.g. conjugate gradient, will be ap-
plied to solve the “inexact” solution z; that
satisfies

[(Hy, + 0 D) ()] — ax) + V f(a)]] < e, (4)

where {7} is a sequence of positive number
which must be chosen. Many iterative linear
solvers can be applied for solving (4), e.g.,
conjugate gradient method,?* MINRES,?*
LSQR,?* GMRES,* LSMR.? Since the co-
efficient matrix Hj + 6,1 is positive defi-
nite, we will choose the conjugate gradient
method for solving (4). We will prove that
this inexactness does not affect to the fast lo-

8 even for

cal convergence of the algorithm in
degenerate cases. More specifically, our pro-
posed algorithm attains a superlinear con-
vergence under a local error bound condi-
tion which is milder than the usual SOSC.
These good theoretical results will be veri-
fied by some numerical experiments. In addi-
tion, numerical results also show us that the
proposed inexact algorithm can help to re-
duce the computational time compared with
exact algorithms.

The paper is organized as follows. Some
notations and description of algorithm will
be introduced in Section 2. Section 3 is de-
voted to the convergence analysis of the
proposed algorithm. Some numerical exper-

iments are reported in Section 4 to verify
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theoretical results and to demonstrate the
effectiveness of our proposed algorithm. The

paper ends with some conclusion.

2. NOTATION AND ALGORITHM DE-
SCRIPTION

Algorithm 1: (kth iteration)

Input: m e N, v > 0,0 € (0,1),
0>0,k>0,€e>0n_1>0
and zo € R"
Output: an optimal solution
If ||V f(z1)| < e, then terminate the
algorithm.
2 Choose 0;, > 0,9, > 0 such that
Hy, = V?*f(x;) + 6,1 = 0 and set
0, = min{||V £ (wx)|I°, 8},
e = kmind[|V £ (z) |77, mr-1 }
3 Compute an trial iterate z;" which

g

satisfies the condition (4).

4 Choose ¢ > 0 such that {¢,} — 0. If
IV f(zH)| < ¢, then set
Tr+1 = x) . Otherwise, apply a
sequence of inner iterations to find

Zry1 such that

IV (@)l < G- ()

5 Set k < k+ 1 and go to Step 1.

Notation For two real vectors = =

L] and y = [y, 40, ..., 0] in
the vector space R", x'y is used to de-

[1'1,3727 ..

note the Euclidean scalar product. The as-
sociated norm is the fy-norm, i.e., ||z| =
(xT2)Y/2. The notation < y (z > y) in-
dicates that z; < y; (resp. z; > y;) for all
i = 1,n. For a vector € R", the notation
diag(x) stands for the diagonal matrix whose
diagonal entries are components of vector x.
The induced norm of a rectangular matrix
M is defined by | M| = max{||Mz| : ||z| <
1}. Let M be a square symmetric matrix,
i.e. M = MT". The smallest eigenvalue of

https://doi.org/10.52111/qnjs.2022.16107

the matrix M is denoted by Apin(M). The
notation M > 0 means that M is a posi-
tive semi-definite matrix, i.e. Ayin(M) > 0.
The open ball of radius r and center z is de-
noted by B(z,r) = {yl|lly — z| < r}. The
solution set of the problem (1) will be de-
noted by S§. For every x € R”, the notation

d(z) = ing |z—y|| denotes the distance from
ye

x to the solution set S. In this case, if the
solution set is nonempty, the notation x will
be used to denote the projection of x onto
S, ie., ||z — x| = d(x).

We now introduce our proposed algo-
rithm in this paper. Let m be a natural num-
ber and v > 0,0 € (0,1), kK > 0, n_; > 0,
6 > 0 and € > 0. At the beginning of the
algorithm, a starting point zy € R" should
be defined. The details of our algorithm is
given in Algorithm 1.

The first step introduces the stopping
condition of the algorithm. In Step 2, the
regularization parameter d; will be chosen
such that the approximation of the Hessian
matrix is positive semi-definite. In particu-
lar, this parameter is chosen such that

S < B max{0, —Aumin(V2f(z))}, VEk € N,
(6)
for some B; > 1. This choice means that
0r 1s mnot less than the absolute value
of the minimum eigenvalue of VZ2f(zy).
This implies that the matrix H, :=
V2f(x) + Ol is positive semi-definite.

In® and ,%° authors proposed to choose

O = Prmax{0, —Apnn(V2f(x1))}. Appar-
ently, this choice validates the require-
ment (6). In our algorithm, we adopt the
same strategy to choose dy. It worths to note
that recently, authors in?® propose a sim-
ple search algorithm based on the indefinite
factorization method MASH7? to find an Jj
satisfying (6). The regularization parameter
0, and the “forced” parameter will be de-

fined based on the norm of the gradient of
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the current iteration x. Step 3 is devoted to
calculate an approximation solution z; with
the tolerance n; defined in Step 2. In Step 4,
we choose a tolerance for the condition to
trigger the inner iteration algorithm. If the
trial iterate ;" creates a sufficient reduction
on the first order optimality condition, we
set it as the starting point of the next itera-
tion. Otherwise, we will apply a sequence of
inner iteration to find an iterate xy,; such
that the condition (5) holds true.

Because our main concern in this paper is
the local behavior of an inexact regularized
Newton method, the globalization scheme is
not mentionned here. Nevertheless, we in-
troduce Step 4 to show the possibility of ap-
plying globalization strategies. It should be
of interest to develop our local scheme to
global one by using globalization techniques

as in. 826

3. ASYMPTOTIC ANALYSIS OF THE
ALGORITHM

Asymptotic analysis of Algorithm 1 is

conducted under the following assumptions.

Assumption 1. The function f is twice dif-
ferentiable, V2f is locally Lipschitz contin-
uous and the set S of minimizers to (1) is
nonempty.

From the closeness of S and the coercive-
ness of the norm, for every x € R", there
exists T € S such that

d(z) = |z — x| (7)

Assumption 2. The gradient provides a lo-
cal error bound condition at some z* € S.

From the two above assumptions, there
exist postive numbers ¢, L, r, 7 such that for

all z,y € B(x*,r),

IVf(@) =Vl <tz—yll, (3
IV2f (@) = V2 Wl < Lllz —yll, (9
d(z) < 7V f(2)ll,  (10)

V@) <0. (11)

From the definition of 8, and 7 in Step 2 of
Algorithm 1 and inequalities (8), (10) and
(11) for all k£ € N such that z € B(z*, 1),

O = IV f(zp)lI” = 7b7d ()7, (12)
e = £V (@) < wH7d ()7, (13)
where b =1/7.

Firstly, we recall a result about the up-
per bound of the regularization parameter
Jr, satisfying (6) via the distance function.

Lemma 1 (Lemma 2 in®). For all k € N
such that x, € B(x*,r/2), we then have
Op < frLd(xy).

Next lemma to demonstrate that the

search direction of the inexact Newton

method, i.e. ;7 — x, obtained from (4) will

be upper bounded by the distance function
evaluated at the current iterate xy.

Lemma 2. Let

1 1
Cl = <I{€1+U + (— + 51) LT10> — 4+ 2
2 b
For all k € N such that x), € B(x*,r/2),
oy = il < Crd(an). (14)

Proof. Let k € N such that =, € B(z*,r/2).
Firstly, let us select z;, € S with d(zx) =
|z, — Zg||. We then have V f(z)) = 0. This
fact and the Lipschitz continuity of f imply
that

Vf(xy)
=V f(zr) — Vf(Tk)

:/0 V2 f (@ + t(x, — Tn)) (xr — Tp)dt

:/0 [V F @+t — 7)) — V2 ()] %

X (g — Tp)dt + V° f(zx) (x), — T1,). (15)
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By noting that V2f(z;,) =
0i)I, one gets

(Hp+0,1)— (0. +

(Hk + 9k1)71v2f(xk)($k — ka)
=X, — T — (5k -+ Hk)(Hk + 9k1)71<$k — fk)
(16)
From (4), (15), (16) and using (9), we get

kaJr_ka
+Vf($k ||+H (Hy. + 01 ) 1Vf(33k)}
< H(Hk-f—ek 1H <77k+—||$k—$kH2>
+ e — Tl + (O + 0x) || (Hy + 1) 7| x
X ||z — @ (17)
Since H;, = 0 and 0, > 0, we have
[(He + 0,17 < 52

Lemma 1, (12) and notlng that ||zx — Tkl =
d(xy) < r, we then deduce from (17) that

. Using this inequality,

i — i

1 L
S_ Hll+gd(£€k)1+a + —d(l’k)Q
Oy, 2

from which completes the proof. Ol

We now show that the sequence of dis-
tances from iterates generated by Algo-
rithm 1 to the solution set & will decrease
with a superlinear rate.

Lemma 3. Let

Co=r </<;€1+” + ((BlL + gcl) rt=e —I—'yl”) Cl) .

For all k € N such that x), € B(x*
we have

> 50ty )
d(z) < Cod(zp)' .

https://doi.org/10.52111/qnjs.2022.16107

Proof. Let k € N be such that z, €
B($*7M). Since €y > 2, by virtue of
Lemma 2, one gets

g — 2| <l — 2wl + [lo — 2"
< Cid(zy) + [Jog — 27|

<

N3

This means that z;” € B(z
error bound condition (10) holds at z;, i.e.,

* T
, 5)- Hence, local

d(zy) < 7V ()] (18)

With the notation uz = azz
from (4) that

— x;, we deduce

IV f (i) + V2 f ()il |

< ||(Hi + 0c) (ul) + V f () |
+{[ (O + o) uf |

< M + (Or + 0k |y |- (19)

The differentiability of f gives us
Vi)
=V f(zx) + /1 V2 f (2 + tuy) Juf dt
9 f(e) +
+ /01 [V fap + tuf) — V2 fap)] uf dt.

Taking the norm on both sides, using (9),
(19) and Lemma 2, we obtain

IV f(z)
< M + (O + k) ||z — x|

+ Sl —
L
< i+ (G + 00) Cad () + 5 CTd ().
(20)

Combining (18) with (20) and using (8), (13)
Lemma 1, we then get

d(zy)

ST(/{Z”"d(xk)H“ + (B Ld(z) +~17d(z)7)
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x Cyd(zy) + ngd(xk)z)

L
S’T <I‘€£1+U + ((61[/ + 501) 7"170 + 710) X

X C1> d($k>1+g,

which completes the proof. O

By following the same argument as in

f .26 we can prove that if the se-

Section 2 o
quence of iterates is close enough to the re-
gion of the solution set S, the inner iteration
algorithm will never be triggered. Moreover,
Algorithm 1 will converge to some solution
of the problem (1) with a superlinear rate of
converence. The main result of this paper is

summarized in the theorem below.

Theorem 4. Let Assumptions 1 and 2 hold
at v* € S. Assume that Algorithm 1 gen-
erates an infinite sequence of iterates {xy}.
There exists R > 0 such that if at an iter-
ation ky € N, x, € B(z*, R), then for all
k> ko, xp41 =z, {x} converges to T € S
and

|2x = 2]

lim =0.

4. NUMERICAL EXPERIMENTS

In this section, we will make some numer-
ical experiments to show the advantages of
the our proposed algorithm. Algorithm 1 is
implemented in MATLAB R2012a. Parame-
ters of this algorithm are chosen as below:
e =10% 0 = 05,60 = 0.1, v = 1072,
k =0.99, n_y = 0.1 gy = 2. The conjugate
gradient method? will be applied to solve
system (4). Because we are only interested
in the local behavior of Algorithm 1, the
globalization strategy is not implemented.
In particular, we do not invoke Steps 4 in
Algorithm 1. Instead, we will choose start-
ing points which are sufficiently close to the
optimal solution of the problem for which

Theorem 4 can be applied. The investigation
related to global behavior of this algorithm
is out of the current work and should be the
topic of another research in the future.

4.1. Superlinear convergence of Al-
gorthm 1

This section is devoted to verify the the-
oretical research developed in this paper. In
particular, we will show that Algorithm 1 at-
tains the superlinear rate of convergence in
some neighborhood of an optimal solution in
which the local error bound condition holds
true.

Let us consider the problem (1) in R?

where
1(:UQ —1)? if z; € [1,11]
f(z) = z(xl —1)*(zy — 11)*
+3(z2 — 1)? otherwise.
(21)

The first and second derivatives of f are

( 0 .
if 2y € [1,11]
To — 1
Vf($) = (.Z’l — 1)3><
X (zy — 11)*(xy — 6) | otherwise.
\ To — 1
and
diag([0,1]7)  if 2, € [1,11]
diag([(z; — 1)*(z1 — 11)2x
V(@) = . -
% (Ta? — 84z1 +227),1]T),

otherwise.

The function f is twice continuously dif-
ferentiable and the second derivative V2 f
is Lipschitz continuous on R%. The solution
set is & = [1,10] x {1}. The local error
bound condition (10) holds at any z* =
(37,1) € S such that 1 < 2z} < 10. Indeed,
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let » = min{x] — 1,10 — z7} > 0. For all
x = (x1,29) € B(x*,r), we have

d(x,8)? = (x5 — 1)
= |V f(2)[

which implies that the error bound condi-
tion (10) is validated at z* with 7 = 1. We
note that, however, the matrix V2 is singu-
lar for all x = (21, 22) such that z; € [1, 10]
which means that the SOSC does not holds
in this example. From the starting point
zo = (9.0, —50), our algorithm converges to
solution ¥ = (9.0,1.0) after 4 iterates. The
behavior of Algorithm 1 in this example is
showed in Figure 1. In this figure, we plot
norms of zy — x*, where z* = [9,1] is the
optimal solution. From this figure, we can
see that the slope of the graph after each
iteration will be more negative. This means
that the sequence {%
In other word, Algorithm 1 attains the su-

} tends to zero.

perlinear convergence in this case.

2

107 ¢ ' ' .
‘ '+ |-e-Algorithm 1
o
10° o
.
= 2 N\
107 |
|
=107 .
107 \
-8 ‘ ‘ ‘ )
105 1 2 3 4
k

Figure 1: Behavior of Algorithm 1 when solv-
ing (1) with f is given by (21).

4.2. Execution time on large-scale
problems

As we have mentioned in Section 1, when
solving large-scale problems, an exact algo-
rithm may take a long time to solve the lin-
ear system (3) which is the main burden in

https://doi.org/10.52111/qnjs.2022.16107

Newton method. Our aim in this section is
to show the advantage of our inexact scheme
when solving large-scale optimization prob-
lems. In particular, we will implement an ex-
act version of Algorithm 1 in which the lin-
ear system 3 will be solved (exactly) instead
of Step 3 of Algorithm 1. To solve the lin-
ear sytem (3), the coefficient matrix Hy+60;/
will be factorized by an LDL decomposition,
see, e.g.,.?8 Because there is no computation
of the square roots of the diagonal elements
is needed, this decomposition is more stable
and more efficient than Gaussian eliminiza-

tion or Cholesky decomposition.

. Inexact Exact
Size

Problem (n) algo- algo-
" rithm rithm
Arwhead 5000 58.02 70.99
bdgrtic 5000 2.43 2.54
broydn7d | 1000 19.91 19.95
brybnd 5000 87.30 94.86

dgdrtic 5000 52.08 44.12
edensch 5000 6.48 6.83

engvall 5000 88.27 87.85
freuroth 5000 | 165.98 169.00
noncvxun 1000 4.20 3.44
penaltyl 1000 7.65 8.86

sensors 1000 | 116.56 122.10

Table 1: Ezecution times (in second) of the
inexact and the exact algorithms on
large-scale problem in CUTEst collec-
tion (n is the number of variables)

In this section, we will consider some
large-scale unconstrained problems under
form (1) in the CUTESst collection.* We will
compare CPU times to solve each problem
by the inexact and the exact algorithms. Ta-
ble 1 shows us the numerical results when
applying these two algorithms in solving
some problems in CUTEst. We will collect
problems which satisfy two requirements:
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the size of a problem (the number of vari-
ables) is greater than 1000, and both algo-
rithms are succeed in solving the problem
within 200s. We compare only the problems
with n > 1000 because these two algorithms
solve the others very fast. This makes the
comparisons unfair. From this table, we can
see that in most of problems, the inexact al-
gorithm take less time to solve than the ex-
act one. This demonstrates the benefit when
using an inxact algorithm instead of the ex-
act algorithm to solve unconstrained opti-

mization problem.

5. CONCLUSION

In this paper, we propose an inexact reg-
ularized Newton method for unconstrained
optimization. The algorithm is a variant of
the algorithm in® where linear systems for
finding search direction are solved approxi-
mately with a suitable tolerance. Assymp-
totic convergence analysis is performed to
show that under some local error bound con-
dition, the algorithm attains a superlinear
rate of convergence. Some numerical exper-
iments are conducted to verify theoretical
results and to show the advantage of our
proposed algorithm. In the future, some re-
searches for globalizing our proposed algo-

rithm should be interested.
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