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ABSTRACT
Introduction: This paper studies risk factors which can have effects on the survival time of lung
cancer patients during the treatment. Methods: The Cox proportional-hazards model has been
applied for investigating the association between the survival time of patients and the predictors
such as age, gender, the weight of patients, meal, the ECOG, and Karnofsky scores. Results: In the
study, we find that the ECOG score, the Karnofsky score evaluated by doctors and the gender are
the top three factors that significantly affect the hazard rate. Also, we utilize the estimated model
to predict survival probability for the patients. Conclusion: In this article, we intentionally present
a complete and detailed guide on how to perform a R-based package in survival analysis step by
step as well as how to interpret all output results.
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INTRODUCTION
In scientific research, we sometimes encounter data
related to assessing an event over time. For example,
a “death” event that describes the time from diagnosis
to death or a “relapse” event describes the time from
when a given treatment is applied until the recurrence
of the disease. Nevertheless, until the end of the study
period, not all cases occur “events”. For instance, the
study of death caused by lung cancer, from the time of
diagnosis, duration of the study was 36 months; not
all patients died after the end of the study. Therefore,
it can be seen that their time of death is unknown.
Hence, this type of research data is characterized as
rarely existing in a normal distribution, because some
data are complete, some data are censored. Thus, the
typical and common method of analysis in this form
of data is survival analysis.
Survival analysis is a crucial sector in Statistics to in-
vestigate the expected duration of time until one or
more events occur. For example, death in biological
organisms and failure in mechanical systems. This
method is also called reliability theory or reliability
analysis in engineering and duration analysis. About
this regard, there are many scholars studied it; for
instance, Laird and Olivier(1981)1 present the using
log-linear analysis techniques to covariance analysis
of censored survival data. Hakulinen and Abeywick-
rama (1985) 2 introduced a package to survival analy-
sis. Murray et al. (1993)3 provided a survival analysis
of joint replacements. Leggat et al. (1998) 4 presented
the noncompliance in hemodialysis: predictors and
survival analysis. Klein and Moeschberger (2006) 5

provided techniques for survival analysis with cen-
sored and truncated data.
Survival analysis is a widespread analysis in several
medical studies. It is the type of data analysis of an
event that occurs at the recorded time, after a certain
treatment intervention or after the time the pathol-
ogy is diagnosed. For example, calculate the risk of
death of patients after surgery to remove the liver can-
cer. Patients will be monitored for the procedure after
2-7 years, statistics of deaths to determine the death
rate, the patient’s ability to live at the following during
surgery.
In addition, survival analysis can be used to compare
the probability of survival of patients after the inter-
vention of two or more certain treatments. Also, it
was found that the relationship between the probabil-
ity of survival of the patient and other factors such as
age at intervention, stage of the disease, chemotherapy
dose by developing the Cox risk ratio model.
Up to the present, the problems of survival analysis
are still concerned and researched by several scien-
tists. Readers may refer in Mahmood et al. (2007) 6,
Strosberg, Gardner, and Kvols, (2009) 7, Zhang et al.
(20138), Stephenson et al. (2015) 9, Schlumberger et
al. (2017)10, Kyriakopoulos et al. (2018) 11, McGre-
gor et al. (2019)12, etc.
Themain purposes of this article are to study the asso-
ciation between the survival time of lung patients and
the predictors such as age, gender, the weight of pa-
tients, meal, the ECOG and Karnofsky scores. Then,
we can train a model used for predicting hazard rate
and the probability of survival time. Besides, we in-
tentionally present a complete and detailed guide for
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survival analysis by using the statistical software R. As
we know that, R is a very powerful statistic software,
easy to install, and easy to use. Survival analysis plays
a tremendously crucial role and immensely profound
significant in life. Thus it is exceedingly meaningful
to have a study about using the statistical software R
in survival analysis.
The paper is organized as follows. The definitions and
examples of the ubiquitous functions and the most
widespreadmodel in survival analysis are presented in
Section 2. The methods used for estimating the ubiq-
uitous functions in survival analysis are also offered in
this section. The procedure of applying survival anal-
ysis and an application to the real data set is provided
in Section 3. Some discussions are illustrated in the
next Section 4. Conclusions are stated in the last sec-
tion.

METHODOLOGY
In this section, we first review the most ubiquitous
functions for survival analysis, such as survival and
hazard function and examples of these functions. We
now discuss the survival function in the next section.

Survival Function

As we have known, survival time is a non-negative
random variable, so if we denote by T the time of the
event, then T ≥ 0. The time considered in the study
may be discrete (set of discrete values (0 < t1 < t2 <

t3...) or may be continuous T ∈ [0,∞). Let S(t) be a
survival function defined by

S(t) = 1−F(t) = P(T ≥ t)

=

{ ∫ ∞
t f (x)dx as t continuous,

∑n≥T f (x) as t discrete.
(1)

Hazard Function

This function is described as the probability that the
research object will happen at time t, usually denoted
by λ (t) or h(t). The function h(t) is defined as follow

h(t) := lim△t→∞
P [(t ≤ T < t +△t) |T ≥ t]

△t
(2)

It can be shown that

h(t) =
f (t)
S(t)

(3)

In fact, we have S(t) = 1−F(t) then dS(t) = d(1−
F(t)) =−d(F(t)) =− f (t)dt.

Thereafter, we get − dS(t)
dt = − f (t). Besides, by the

definition, we have

h(t) = lim△t→∞
P[(t≤T<t+△t )|T≥t]

△t

= lim△t→∞
P[(T∈[t,t+△t )|T≥t]

△t

= lim△t→∞
1
△t

P(T<t+△t )−P(T<t)
P(T≥t)

= lim△t→∞
1
△t

(1−S(t+△t ))−(1−S(t))
S(t)

= lim△t→∞
1
△t

S(t+△t ))−S(t)
△t

= lim△t→∞
1
△t

S(t+△t )−S(t)
△t

= 1
S(t) lim△t→∞

S(t+△t )−S(t)
△t

=− 1
S(t)

−dS(t)
dt =

f (t)
S(t) .

From this result, we can express

−h(t)dt =
dS(t)
S(t)

.

This is equivalent to

−h(x)dx =
dS(x)
S(x)

.

Thereafter, we get

∫ t
0 −h(t)dx =

∫ t
0

dS(x)
S(x) dx

= logS(t)− logS(0) = logS(t),

and

S(t) = exp
(∫ t

0
−h(x)dx

)
.

In case of the discrete variables:

h(t j) = P(T = t j|T ≥ t j) =
P(T=t j)
P(T≥t j)

=
f (t j)
S(t j)

=
f (t)

∑k:tk≥t j
f (tk)

.

The cumulative hazard function is defined by

H(t) =

{ ∫ t
0 h(x)dx with continous variables,

∑k:tk<thk with discrete variables.

In order for readers to easily access these two func-
tions, we provide two specific examples in the next
sub-section.

Examples of Survival and Hazard Function
(a) Example 1: Exponential distribution
The exponential density with mean parameter θ has
the form

f (t) =
1
θ

exp
(
− t

θ

)
.

The survival function is given by

S(t) = 1−F(t) = exp
(
− t

θ

)
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The hazard function is then

h(t) =
f (t)
S(t)

=

1
θ

exp
(
− t

θ

)
exp

(
−−t

θ

) =
1
θ
, ∀t ≥ 0.

The cumulative hazard is given by

H(t) =
1
θ
, t ≥ 0.

(b) Example 2: Weibull distribution
TheWeibull density with shape parameter λ and scale
parameter θ is

f (t) =
λ tλ−1

θ λ−1
exp

(
−
( t

θ

)λ)
.

The survival function can be expressed as follows

S(t) =
∫ ∞

t
λuλ−1

θ exp
[
−
( u

θ
)λ

]
du

= exp
[
−
( t

θ
)λ

]
.

The hazard function is then

h(t) = f (t)
S(t) =

λ tλ−1

θ λ exp

[
−
( t

θ

)λ]

exp

[
−
( t

θ

)λ]
= λ tλ−1

θ λ =
(

λ
θ λ

)
tλ−1,

The cumulative hazard is given by

H(t) =
(

1
θ λ

)
tλ , t ≥ 0.

In most analyses, we often consider the appropriate
regression model to study the relationship between
covariates. It is the same with survival analysis. The
Cox regression model is the most widespread regres-
sion model in this analysis. Thus we present this
model in the next sub-section.

Cox Regression Model (Cox’s proportional
hazards model)
Thismodel was first proposed byDavid Cox (1972) 13.
The probability of the endpoint is called the hazard
such as death or any other event of interest, e.g., re-
currence of the disease. The hazard is modeled as:

h(t) = h0(t)exp(α1X1 +α2X2 + ...+αnXn) (4)

where t represents the survival time, h(t) is the
expected hazard at a time t, and (X1,X2, ...Xn) is
a collection of predictor variables. The coefficient
(α1,α2, ...,αn) measures the impact of covariates,
and h0(t) is the baseline hazard at a time t, represents
the hazard when all of the predictors (or independent
variables) (X1,X2, ...Xn) are equal to zero.

The quantities exp(αi) are called hazard ratios (HR).
If αi, or HR > 1, it indicates that as the value of the ith

covariate increases, the hazard will also be increased.
This value is called a bad prognostic factor. In this
case, the length of survival decreases. By contrast, if
αi < 0 it’s called a good prognostic factor. If the haz-
ard ratio equal to 1 corresponding αi = 0, the covari-
ate makes no effect.

Estimation of the survival and hazard func-
tion
We present the two most widespread methods to esti-
mate the survival and hazard function that is Kaplan-
Meier estimator and Nelson-Aalen estimator. Let ti
be a time when at least one event happened. Suppose
that ti is arranged in order: 0 < t1 < t2 < ... < ti, di is
the number of events (e.g., deaths) that happened at
the time ti,ni is the number of objects that occur at ti
or later, and let ri be the number of individuals at risk
(i.e., alive and not censored) just before to time ti.

Kaplan-Meier estimator
This estimator is a non-parametric maximum esti-
mate for the survival function St . This method is pro-
posed by Kaplan and Meier (1958) 14. It can be ex-
pressed as follows

Ŝ(t) = ∏ti≤t(1− ĥi) = ∏ti≤t

(
1− di

ni

)
(5)

Nelson-Aalen estimator
TheNelson-Aalen estimator is a non-parametric esti-
mator that can be utilized to estimate the hazard func-
tion. Because there is no need for distribution as-
sumptions, a crucial use of the estimator is to test the
appropriateness of parameter models graphically, and
this is exactly why this method was first introduced
by Nelson (1969, 1972)15,16. Independent from Nel-
son, Altshuler (1970) 17 also studied this issue. Later,
Aalen (1978)18 expanded its use beyond survival data
and established competitive risk, and studied its small
and large sample properties by martingale. Nowa-
days, this estimator is called theNelson-Aalen estima-
tor. This function can be expressed as follows

H(t) = ∑ti<t
di

ri
= ∑

ti<t
ĥi (6)

DATA AND ANALYSIS RESULTS
The procedure of using R in survival analy-
sis
In this section, we introduce the procedure of survival
analysis using R language as well as the usage of some
functions.
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Step 1. Determining variables related to time factors
such as lifetime, survival time, and failure time. Be-
fore using the R-system software for survival analy-
sis, we first have to load the survival package into
the working environment by using the command li-
brary(survival).
Step 2. Calculating descriptive statistics, plot some
graphs for the data set, for instance, using plot, Sur-
vand survfit built in the survival package.
Step 3. Applying the Cox regressionmodel to find out
the risk factors which have effects to the hazard risk
h(u). The command is coxph().
The simple usage of the function coxph() is given be-
low: coxph(combined variables ~ independent vari-
ables, data)
or it can be written as follows
coxph(Surv(variable 1, variable 2) ~ independent
variables, data)
Step 4. We can use cox.zph() to test the hypothesis of
risk factors: cox.zph(coxph(Surv(variable 1, variable
2) ~ independent variables, data)) In order to help
readers that can easily use the statistical software R
in survival analysis in practice, we introduce analysis
with real data in the next section.

Application and analysis results
Firstly, we load the survival package to be developed
by Terry Therneau et al.19 into the working environ-
ment:
> library(survival)
In this section, we do analysis on the lung cancer data
set, which is taken from the North Central Cancer
Treatment Group. This data set is named ”lung”. The
data set has 228 rows and 10 columns, with 10 vari-
ables described as follows
1. inst: Hospital and organization code.
2. time: Survival time in days.
3. status: censored: = 1, dead: = 2.
4. age: age of patien.
5. sex: Men = 1, Women = 2.
6. ph.ecog: Score for ECOG effect (good = 0, death =
5).
7. ph.karno: The scores for Karnofsky’s effects are
evaluated by doctors.
8. pat.karno: The scores for the effect of Karnofsky
was assessed by patients.
9. meal.cal: The number of calories consumed during
the meal.
10. wt.loss: Weight loss for the last 6 months.
The ECOG scale first appeared in the medical litera-
ture in 1960. It describes a patient’s level of function-
ing in terms of their ability, between 0 and 5, to care

for themself, daily activity, and physical ability, (walk-
ing, working, etc..). The table below was developed by
the Eastern Cooperative Oncology Group, Robert L.
Comis, MD,GroupChair, based on the paper of Oken
M, Creech R, Tormey D, et al. (1982) 20.
Karnofsky index (in Karnofsky D, Burchenal
J,1994)21 similar to ECOG, between 100 and 0, was
introduced in a textbook in 1949. The table below
displays Karnofsky index.
Using the data above, we focus on how to estimate the
probability of survival time for patients and to find
out risk factors which can cause deaths to the patients
based on the Cox regressionmodel. Next, we can take
a look on the first 6 rows and last 6 rows of the data set
by using the command head(lung) and tail(lung). Af-
ter executing these commands, the result is depicted
in Figure 1.
Note that NA is missing values. We now can compute
descriptive statistics by installing and loading some
packages, as shown below:
Cancer Treatment Group, with 228 rows and 10
columns. In this study, we find information on rel-
ative among variables with time (in days) of each sta-
tus.
> install.packages(”fBasics”)
> install.packages(”tseries”)
> library(fBasics)
> library(tseries)
Because our data set is named “lung”, so we execute
the command:
> basicStats(lung)
For simplicity, we can utilize the round(result, 2)to get
2 decimal places. The general of the roundfunction in
R is round(result, n) to get n decimal places.
> round(basicStats(lung),2)
After performing the above command, the result of
the descriptive statistics for the data set “lung” is de-
picted in Figure 2.
As can be seen in Figure 2, the average lifetime of the
patients is more than 305 days. The average of their
age is relatively high (62.45). The number of men ac-
counts for a slightly higher proportion (1.39). The
score for ECOG is less than 1, while Karnofsky is quite
stable rated by both doctors and patients (81.94 and
79.96). The average calories consumed by the study
subjects is 928.78.
Regarding the standard deviation (sd), meal.cal at-
tains the largest sd of 402.17, which is almost double
the standard deviation of the second-highest quan-
tity of 201.65 for the survival time. Age with a devi-
ation is no more than 10 (9.07), and weight loss and
scores of the doctor’s and patients Karnofsky have sd
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Table 1: ECOG performance status Grade

ECOG PERFORMANCE STATUS

GRADE STATUS

0 Fully active, able to carry on all pre-disease performance without restriction.

1 Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or seden-
tary nature, e.g., light housework.

2 Ambulatory and capable of all self-care but unable to carry out any work activities; up and about more
than 50% of waking hours.

3 Capable of only limited self-care; confined to bed or chair more than 50% of waking hours.

4 Completely disabled; cannot carry on any self-care; totally confined to bed or chair.

5 Dead

Table 2: Karnofsky performance status index

KARNOFSKY PERFORMANCE STATUS

Index STATUS

100 Normal, no complaints; no evidence of disease

90 Able to carry on normal activity; minor signs or symptoms of the disease

80 Normal activity with effort, some signs or symptoms of the disease

70 Cares for self but unable to carry on normal activity or to do active work

60 Requires occasional assistance but can care for most of the personal needs

50 Requires considerable assistance and frequent medical care

40 Disabled; requires special care and assistance

30 Severely disabled; hospitalization is indicated although death not imminent

20 Very ill; hospitalization and active, supportive care necessary

10 Moribund

0 Dead

Figure 1: All variables used in the lung dataset, which is taken from the North Central
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Figure 2: The descriptive statistics of variables in the dataset. Itincludes important information when the first
timewe look at the data such as the number of observations, the number of missing value (NAs), maximum value,
minimum value, mean and variance, etc.

in the range from 12 to 15. Meanwhile, the deviation
of ECOG is not more than 1.
Among variables, the median of meal.cal is still the
largest value of 975 and follow by the number of
days the patients lived having median of 255.5. The
Karnofsky score in both types is 80. Median of the
status is 2 indicating that the number of subjects cen-
sored is less than the number of deaths. Median of sex
is 1 showing that there are more men over women in
the study. Median values of the age, the weight loss
after 6 months, and the ECOG score is 63 years, 7 kg
and 1, respectively.
The maximum and minimum values (max, min) of
survival time are 1022 and 5, respectively. The age of
participants in the study is from 39 to 82; the score for
ECOG ranges from 0 to 3. The highest score for both
Karnofsky types is 100, and we see a difference in the
minimum values (50 for doctors score, 30 for patients
score). Calories per meal have been increased from
96 to 2600 and after 6 months, some patients lost up
to 68 kg in weight, while the other patients increased
the weight up to 24 kg.
The standard error (SE) of calories and age is quite
large (29.89 and 13.95), while SE values of the rest
variables are smaller than 1.
In the survival package, there are Survand survfitfunc-
tions that give an overview of the data set. The Surv
function is used to create a compound variable, for
instance, a combination of time and status as in the
following command:
> time=lung[,2]
> status=lung[,3]
> survival.time = Surv(time, status==2)
> survival.time

After executing the above command, the result is de-
picted in Figure 3.
Note that . This variable is only valuable and mean-
ingful for the analysis in R, but in reality maybe we do
not need it.
For the survfit function, it is also quite simple, we only
need to provide two parameters: time and status as in
the following example:
> survfit(Surv(time,status==2)~1)
If there is already an object “survtime”, then we simply
call the command:
> survfit(survival.time~1)
After executing the above command, it outputs the re-
sult as follows:
> survfit(survival.time~1)
Call: survfit(formula = survival.time ~ 1)
N events median 0.95LCL 0.95UCL
228 165 310 285 363
The results show that the data has 228 objects, in
which it occurred 165 death events withmedian of the
lifetime is 310 days, and the 95% confidence intervals
of the lifetime ranges from 284 to 361 days.
In order to illustrate survival probability, we can rep-
resent it through a graph. We execute the following
command.
> plot(survfit(survival.time~1),
xlab=”Time”,ylab=”Cumulative survival probability”,
col=c(”red”, ”black”, ”black”))
After performing the above command, the result in R
is provided as in Figure 4.
After we have thoroughly investigated the data set, we
want to study how the factors affect the hazard rate
h(t). The Cox regression model helps us address this
problem. We can estimate this model by the function
coxph(formula, data).
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Figure 3: Life time of the patients. The plus sign “+” indicates that the patients were censored or alive, otherwise
they passed away during the study

Figure 4: Survival probability of the patients with 95% confidence interval. The time counted in days and the
cumulative survival probability of S(t) of the objects. The central red line is the cumulative probability of S(t), and
two black lines are 95% confidence intervals. The 95% confidence interval of this example is relatively good, and
the interval is changing from narrow and larger width, which can help us to realize the change of the survival
probability of patients over time.
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We first use the Cox regression model to check rela-
tionship between the compound variable (time and
status) and all remaining independent variables by the
following command:
>coxph(Surv(time,status)~age+sex+ph.ecog
+ph.karno+pat.karno+ +meal.cal+wt.loss,
data=lung)
After performing the above command, we have the re-
sults presented as follows.
> pkh=coxph(Surv(time,status)~age+sex+ph.ecog
+ph.karno+ +pat.karno+meal.cal+wt.loss,
data=lung)
> pkh
Call: coxph(formula = Surv(time, status) ~ age + sex
+ ph.ecog +ph.karno + pat.karno +meal.cal + wt.loss,
data = lung)
coef exp(coef) se(coef) z p-value
age 1.06e-02 1.01e+00 1.16e-02 0.92 0.3591
sex -5.51e-01 5.76e-01 2.01e-01 -2.74 0.0061
ph.ecog 7.34e-01 2.08e+00 2.23e-01 3.29 0.0010
ph.karno 2.25e-02 1.02e+00 1.12e-02 2.00 0.0457
pat.karno -1.24e-02 9.88e-01 8.05e-03 -1.54 0.1232
meal.cal 3.33e-05 1.00e+00 2.60e-04 0.13 0.8979
wt.loss -1.43e-02 9.86e-01 7.77e-03 -1.84 0.0652
Likelihood ratio test=28.3 on 7 df, p=0.000192
n= 168, number of events= 121
(60 observations deleted due to missingness)
It can be seen that, this is the results based on the influ-
ence of age, sex, Ecog and Karnofsky scores of doctors
and patients, calories per meal and weight lost over 6
months. Results show that the variables sex, ph.ecog,
and ph.karno have significant influences on the sur-
vival probability because their p-value < 5%). The co-
efcolumn represents for estimates of the parameters
in themodel, while exp(coef) represents the influence
on the risk score when the variable increases by 1 unit.
Next, we can use summary(pkh) to summarize all re-
sults from the fitted Cox regression model as below:
> summary(pkh)
Call:
coxph(formula = Surv(time, status == 2) ~ age + sex
+ ph.ecog + ph.karno +
+pat.karno + meal.cal + wt.loss, data = lung)
n= 168, number of events= 121
(60 observations deleted due to missingness)
coef exp(coef) se(coef) z Pr(>|z|)
age 1.065e-02 1.011e+00 1.161e-02 0.917 0.35906
sex -5.509e-01 5.765e-01 2.008e-01 -2.743 0.00609 **
ph.ecog 7.342e-01 2.084e+00 2.233e-01 3.288 0.00101
**
ph.karno 2.246e-02 1.023e+00 1.124e-02 1.998
0.04574 *

pat.karno -1.242e-02 9.877e-01 8.054e-03 -1.542
0.12316
meal.cal 3.329e-05 1.000e+00 2.595e-04 0.128
0.89791
wt.loss -1.433e-02 9.858e-01 7.771e-03 -1.844
0.06518.
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
age 1.0107 0.9894 0.9880 1.0340
sex 0.5765 1.7347 0.3889 0.8545
ph.ecog 2.0838 0.4799 1.3452 3.2277
ph.karno 1.0227 0.9778 1.0004 1.0455
pat.karno 0.9877 1.0125 0.9722 1.0034
meal.cal 1.0000 1.0000 0.9995 1.0005
wt.loss 0.9858 1.0144 0.9709 1.0009
Concordance = 0.651 (se = 0.029 )
Rsquare = 0.155 (max possible= 0.998 )
Likelihood ratio test = 28.33 on 7 df, p=2e-04
Wald test = 27.58 on 7 df, p=3e-04
Score (logrank) test = 28.41 on 7 df, p=2e-04
From this result, the p-values for Likelihood ratio test,
Wall test and Score (logrank) test indicate that the
model is significant. These tests are applied to eval-
uate the null hypothesis that all of coefficient α of
model is zero. So in this case, the null hypothesis is
rejected. We can see that the covariates sex, ph.ecog,
and ph.karno are significant since p-values are less
than 0.05. However, the covariates of age, pat.karno,
meal.call, and wt.loss are failed to be significant.
The p-value for sex is 0:00609, with a hazard ratio hf
= exp(coef) = 0:5765 < 1, show that it has a strong
relationship between the partient’s sex and decreased
risk of death. Note that the hazard ratios of covariates
are interpretable as multiplicative effects on the haz-
ard. Similarly, the p-value for ph.ecog is 0.00101, with
hazard ratio is 2:0838 > 1, indicating a strong relation-
ship between the ph.ecog value and increased risk of
death.
By contrast, the p-value for meal.cal is 0.89791. The
hazard ratio is 1.000, with a 95% confidence interval
of 0.9995 to 1.0005. Since the confidence interval for
hazard ratio include 1, it indicates that age makes a
smaller contribution to the difference in the hazard
ratio after adjusting for ph.ecog value, pat.karno value
and patient’s sex, and the only trend toward signifi-
cance. It seems not a significant contribution in this
case.
For the purpose of predicting the survival probabil-
ity of an event, we split data into training data set and
testing data set with the ratios 80% and 20% of the
whole data, respectively. With the training data set,
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we run the Cox survival model to learn the coeffi-
cients. Then, we use the testing data set to predict the
survival probability of the event.
> set.seed(300)
> training.samples=createDataPartition
(lung$time,p=0.8, list=FALSE)
> training.data<-lung[training.samples,]
> test.data<- lung[-training.samples,]
############## >
pkh=coxph(Surv(time,status)~age+sex+ph.ecog
+ph.karno+pat.karno+meal.cal+wt.loss,
data=training.data)
> test=test.data[,-c(1,2,3)]
> test1 = test.data[,-1]
> predict(pkh,newdata=test1, ”expected”)
> exp(-predict(pkh,newdata=test1, ”expected”))
[1] 0.57250330 NA NA NA 0.93834019
[6] 0.60755065 NA 0.96866930 NA 0.17090105
[11] 0.83522433 0.35415900 0.74692248 0.86582180
0.03103017
[16] 0.58304061 0.17535892 0.86821706 0.90241398
NA
[21] 0.60967940 NA 0.75159416 0.35146879
0.37332993
[26] 0.86343272 0.43038027 NA 0.31838746 NA
[31] 0.67358530 0.61329536 0.64212740 NA
0.81973135
[36] NA NA 0.77227962 0.95996078 NA
[41] 0.80716582 NA 0.72431187 0.84400730
Dataframe of test1 with the first six rows:
> head(test1)
time status age sex ph.ecog ph.karno pat.karno
meal.cal wt.loss
4 210 2 57 1 1 90 60 1150 11
12 654 2 68 2 2 70 70 NA 23
13 728 2 68 2 1 90 90 NA 5
14 71 2 60 1 NA 60 70 1225 32
22 81 2 49 2 0 100 70 1175 -8
24 371 2 58 1 0 90 100 975 13
At the first row in test1 data set, we can state that the
probability that a 57-year-old man is still alive after
210 days is 0.5725. Also, the model can’t define prob-
ability for some events because of missing data.

DISCUSSIONS
The paper presents a completed and detailed guide
survival analysis and its application by using the sta-
tistical software R. Survival analysis plays a tremen-
dously crucial role an immensely profound significant
in life. Thus, it is exceedingly meaningful to have a
study about using the statistical software R in survival
analysis.

This paper is also a valuable reference for faculty
members as well as students in probability and statis-
tics. Besides, it can also help those who are interested
in this area. The article is very detailed and complete
about survival analysis, so it is easy for people to ac-
cess and understand it.
In general, it can be seen that the functions in R used
for survival analysis will work well if our data set does
not contain missing values. In practice, however, we
often encounter data sets that contain missing values.
Therefore, we cannot immediately apply the available
functions in R for survival analysis. Usually, the ef-
fective solution for this situation is to combine with
methods used for solving the missing data problems.
Regradingmissing data problems, they have also been
studied and mentioned by different researchers. For
instance, Pho et al. (2019b)22 reviewed three update
methods to solve the issues with missing data. Be-
sides, we refer to Little (1992) 23, Horton and Klein-
man (2006)5, Mahmoudi et al. (2020a)24, etc; for fur-
ther details. This will also be a potential research di-
rection if we can combine the methods used for deal-
ing with missing values and the methods of survival
analysis.
In this study, we capture the relationship between sur-
vival time and risk factors of lung cancer patients by
only the Cox regression. For future work, it will be
a more powerful tool if we can utilize different ma-
chine learning models such as survival tree, random
forest, etc. Also, we can think of applying cause-effect
relationships inference in survival analysis. Such re-
lationships can be modeled by the Directed Acyclic
Graph (DAG), and the effect scores of the risk factors
can be determined by using the Treenet models, see,
e.g., Changpetch (2016)25. Time series analysis and
survival analysis lead to future object changes, so un-
derstanding and working together will yield more re-
liable results. These research tools have an important
practical application, such as the study of the Covit-
19 disease. About related research topics can look in
Maleki et al.26,27, Pho, K. H. 28.

CONCLUSIONS
In this study, we have presented the most ubiqui-
tous functions in survival analysis, consisting of sur-
vival and hazard function and examples of these func-
tions. In addition, we also reviewed the Cox re-
gression model which is one of the most widespread
model in survival analysis. Moreover, we provided the
approach to estimating the survival and hazard func-
tion as well as the procedure of using R in survival
analysis. As an application, the data set of lung cancer
has been used to analyze risk factors which can cause
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deaths of the patients. Furthermore, we have also
introduced some extensive research directions such
as doing survival analysis with missing data and the
study of the cause-effect relationships in survival anal-
ysis.
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