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On chi-square type distributions with geometric degrees of
freedom in relation to geometric sums

Tran Loc Hung∗

ABSTRACT
The chi-square distribution with n degrees of freedom has an important role in probability, statis-
tics and various applied fields as a special probability distribution. This paper concerns the relations
between geometric random sums and chi-square type distributions whose degrees of freedom are
geometric randomvariables. Somecharacterizations of chi-square type randomvariableswith geo-
metric degrees of freedom are calculated. Moreover, several weak limit theorems for the sequences
of chi-square type random variables with geometric random degrees of freedom are established
via asymptotic behaviors of normalized geometric random sums.
MSC2010: Primary 60E05; 60E07; Secondary 60F05; 60G50.
Key words: Chi-square distribution, Geometric random sums, Weak limit theorems.

INTRODUCTION
Let {Xn,n ≥ 1} be a sequence of independent,
standard normal distributed random variables,
(shortly,Xn ∼ N (0,1),n ≥ 1).
It has long been known that the partial sumX2

1 +X2
2 +

· · ·+ X2
n is said to be a chi-square random variable

with n degrees of freedom, denoted by χ2(n). The
probability density function of the χ2(n) is given by

fχ2(n)(x) =
1

2n/2Γ(n/2)
e−x/2xn/2−1, for x > 0,

0, for x ≤ 0,

(1)

where Γ(y) =
∫+∞

0 e−xxy−1dx (for y > 1), denotes
the Gamma function (see for instance1). It is eas-
ily seen that

{
X2

j , j ≥ 1
}
is a sequence of indepen-

dent, identically distributed (i.i.d.) random variables,
X2

j ∼ χ2(1) for j ≥ 1 with mean E
(

X2
j

)
= 1 and fi-

nite variance Var
(

X2
j

)
= 2, for all j ≥ 1.

Thus, the chi-square randomvariable χ2(n) should be
considered as a partial sum of n desired i.i.d random
variables X2

j , j ≥ 1. Especially, degree of freedom of
chi-square distribution χ2(n) is a deterministic num-
ber n of square of i.i.d. random variables having stan-
dard normal distribution in summation.
It is also worth pointing out that for large n the de-
sired sequence

{
X2

j , j ≥ 1
}
will be obeyed the classi-

cal weak limit theorems like weak law of large num-
bers and central limit theorem. Especially, the classi-

cal Weak law of large numbers states that

χ2(n)−E
(
χ2(n)

)
n

=

n−1 ∑n
j−1 X2

j
P→ 1 as n → ∞.

(2)

or

n−1 ∑n
j=1 X2

j
D→ D1as n → ∞, (3)

where D1 is a random variable degenerated at point
1. Furthermore, the Central limit theoremwill be for-
mulated as follow

χ2(n)−E
(
χ2(n)

)[
Var
(
χ2(n)

)]1/2
=

n−1/2 ∑n
j=1

(
X2

j −1
√

2

)
D→ N (0,1)asn → ∞.

(4)

(see for instance1, page 156-159). Here and sub-

sequently, the symbols P
→

and D
→

stand for the

convergence in probability and convergence in dis-
tribution, respectively. The chi-square distribution
with degrees of freedom n plays an important role
in various applied problems like χ2− testing in non-
parametric statistics, in estimation theory or in testing
hypothesis, etc. (see 1 for more details).
The interesting question arises as to what happens
with the distribution of
chi-square random variable with n degrees of free-
dom, when the deterministic number n (degree of
freedom) will be replaced by a positive-integer val-
ued random variable N, which independent of all
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Xn,n ≥ 1 . This question has been addressed in the
article2. Moreover, the results should be more in-
teresting if the degree of freedom being a geomet-
ric random variable Np, p ∈ (0,1), independent of
all X j, j ≥ 1 and having a probability mass function
P
(
Np = k

)
= p(1 − p)k−1,k ≥ 1, p ∈ (0,1). Then

the sum X2
1 +X2

2 + · · ·+X2
Np
of random variables X2

n
up to the geometric degrees of freedom, denoted by
χ2 (Np

)
. On the other hand, the χ2 (Np

)
may be con-

sidered in the role of a compound geometric
sum χ2 (Np

)
:= X2

1 +X2
2 + · · ·+X2

Np
, which will lead

to interesting results, too. Itshould be noted that
in the classical literature the compound geometric
sums have been attracting much attention. Actu-
ally, the compound geometric sums can model many
phenomena in insurance, queuing, finances, relia-
bility, biology, storage, and other real world fields
(for a deeper discussion of this the reader is referred
to3 4 5 6 7 8 9).
This paper deals with study of the distribution of chi-
square type random
variables with geometric degrees of freedom via geo-
metric random sums. Some characterizations of the
χ2 (Np

)
are given. Two asymptotic results of the

probability distribution functions of the χ2 (Np
)
are

also investigated in two limit theorems for compound
geometric sums.
The organization of this paper is as follow. Section 2
deals with some
characterizations of the χ2 (Np

)
. An algorithm of cal-

culating the probability density function of χ2 (Np
)

is presented in this section. In Section 3 the asymp-
totic behavior of desired normalized sum the asymp-
totic behaviors of two normalized geometric random

sums pχ2 (Np
)
and p1/2 ∑Np

j=1

[
X2

j −1√
2

]
when p ↘ 0+

will be presented in two weak limit theorems for
compound geometric sums of squares of independent
standard normal random variables. The received re-
sults in this
paper are a continuation of the2.

CHARACTERIZATIONS OF
CHI-SQUARED TYPE RANDOM
VARIABLEWITH GEOMETRIC
DEGREES OF FREEDOM χ2 (Np)

For the sake of convenience, we denote by
fχ2(Np)(x) and Fχ2(Np)(x) the
probability density function and probability distribu-
tion of the chi-square type with geometric random
degree of freedom χ2 (Np

)
, respectively. Based on

formula in (1), the following propositions will be
stated without proofs as follows:

Proposition 2.1. The density probability function
of χ2 (Np

)
is given by

fχ2(Np)(x) =
∞

∑
n=1

P
(
Np = n

)
fχ2(n)(x)

=
∞

∑
n=1

p(1− p)n−1 fχ2(n)(x),

x ∈ (0,+∞).

(5)

According to the formula in (5), the probability den-
sity function of the χ2

N(p) should be calculated by fol-
lowing algorithm.
Algorithm 2.1.

1. Define the probability distribution func-
tion fχ2(n)(x)in (1).

2. Compute the probabilitiesP
(
Np = n

)
= p(1 −

p)n−1,n ≥ 1related to the geometric random
variableNpwith parameterp ∈ (0,1).

3. Compute the probability distribution function
fχ2(Np)(x)with the geometric degrees of free-
domNp, by the formula (5)

fχ2(Np)(x) =
∞

∑
n=1

p(1− p)n−1 fχ2(n)(x).

Proposition 2.2. The probability distribution func-
tion of χ2 (Np

)
is defined as follows

Fχ2(Np)(x) = ∑∞
n=1 P

(
Np = n

)
P
(
χ2(n)≤ x

)
= ∑∞

n=1 p(1− p)n−1Fχ2(n)(x),
x ∈ (0,+∞),

whereF χ2(n)(x) =
∫ x

0 fχ2(n)(x)dx.

(6)

According to X j ∼ N(0,1), for j ≥ 1, hence X2
j ∼

χ2(1) for j ≥ 1. Then the numeric characterizations
of chi-square type random variable with geometric
degree of freedom χ2 (Np

)
should be directly calcu-

lated as follows:
Proposition 2.3.
1. Using the Wild’s identity for a random sum (see for
instance10, the mean of
χ2 (Np

)
should be given in from

E
(
χ2 (Np

))
= E

(
Np
)
×E

(
X2

j

)
= p−1 (7)

2. The variance of χ2 (Np
)
will be computed by

Var
(
χ2 (Np

))
= E

(
Np
)
×Var

(
X2

j

)
+
(
E
(

X2
j

))2
×Var

(
Np
)

= 2p−1 +

(
1− p

p2

)
=

1+ p
p2 .

(8)

181



Science & Technology Development Journal, 22(1):180-184

Figure 1: Plot of probability density function fχ2(Np)(x) corresponding the geometric parameters p, p ∈
(0,1), established by formula (5).

The following figure is showing the behaviors of
curves of the probability density functions defined in
(5), corresponding various value of parameter p ∈
(0,1).
Remark 2.1. It is clear that, according to the Fig-
ure 1, the curves of the probability density distribu-
tion fχ2(Np)(x)are decreasing when values of the pa-
rameters p tend to zero. This does not allow us to have
analogues as asymptotic behaviors of the probability
density distribution fχ2(n)(x)of the chi-square random
variable with geometric degrees of freedomχ2(n)in (1)
when n tends to infinity (see1 for more details). The
essence of this difference will be explained by weak limit
theorems for geometric random sums in next section.

ASYMPTOTIC BEHAVIORS OF
χ2 (Np) IN RELATION TOGEOMETRIC
RANDOM SUMS
Here and subsequently, denote by Em the exponen-
tial distributed random variable with mean E(Em) =

m, with characteristic function φεm(t) =
1

1−it , and
D(a) stands for the random variable degenerated

at point a ∈ (−∞,+∞), i.e. P
(
D(a) = a

)
=

1 and P
(
D(a) ̸= a

)
= 0.

The following theorems will demonstrate the asymp-
totic behaviors of two
normalized geometric random sums pχ2 (Np

)
and

p1/2 ∑Np
j=1

[
X2

j −1√
2

]
when p ↘ 0+.

The received results will show the difference between
of limiting distributions of normalized geometric ran-
dom sums and determined sums in terms of asser-
tions (3) and (4).
Before stating the main results of this section we first
provide some
propositions as follows.
Proposition 3.1. LetEmbe an exponential distributed
random variable with mean m. Then,

εm
D
= p∑Np

j=1 ε( j)
m , (9)

whereE ( j)
m are i.i.d random variables having expo-

nential distribution with mean m, and independent
ofNp for p ∈ (0,1). Here and from now on the nota-
tionD

=stands the identity in distribution.
Proof. According to Theorems 9.1 and 9.2 in10 (page
193-194), the characteristic function of p∑Np

j=1 ε( j)
m

will be defined as follows

φ
pΣNp

j=1ε( j)
m
(t) = hNp

(
φε( j)

m
(pt)

)
=

pφ( j)
εm (pt)

1− (1− p)φε ( j)
m
(pt)

=
p

φ−1
ε−1

m
(pt)−1+ p

=
pm

m− it −m+ pm
=

m
m− it

= φεm(t) for t ∈ (−∞,+∞),

(10)

where hNp(t) =E
(
tNp
)
denotes the probability gener-

ating function of Np . The Eq. (10) finishes the proof.
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Theorem 3.1. Let {Xnn ≥ 1} be a sequence of inde-
pendent, standard normal distributed random vari-
ablesXn ∼N(0,1) for n≥ 1. LetNp be a geometric dis-
tributed randomvariable with parameter p, p∈ (0,1).
Assume that the random variables X1,X2, . . . and Np

are independent. Then,

pχ2 (Np
)
= p∑Np

j=1 X2
j

D→ ε1 as p ↘ 0+, (11)

where ε1 ∼ Exp(1) is an exponential distributed ran-
dom variable with mean 1 and

P(ε1 ≤ x) = 1− e−x for x ≥ 0

Proof. Let us denote by hNp(t) :=

E
(
tNp
)
and φX2

n
(t) := E

(
eitX2

n

)
the probability

generating function of Np and the characteristic
function of a random variable Xn, respectively. Then,
direct computation shows that

hNp(t) =
pt

1− (1− p)t
,

for |t|< 1
1−p , p ∈ (0,1) ,

and

φX2
n
(t) = (1−2it)−1/2

for−∞ < t <+∞,n ≥ 1.
In view of theorems 9.1 and 9.2 in10 (page 193-194),
the characteristic function of the pχ2 (Np

)
is given by

φpχ2(Np)(t) = hNp

(
φX2

n
(pt)

)
=

pφX2
n
(pt)

1− (1− p)φX2
n
(pt)

=

p√
1−2ipt − (1− p)

=
p[
√

1−2ipt +(1− p)]
1−2ipt − (1− p)2 =

√
1−2ipt +1− p

2−2it − p

Letting p → 0+ , we can assert that

φpχ2(Np)(t)→ (1− it)−1 = φε1(t) for all t ∈ (−∞,+∞).

In view of the continuity theorem for characteristic
function (see10 formore details), the proof is finished.
Remarks 3.1. Theorem 3.1 is an analog of the Rényi’s
result (1957) on asymptotic behavior of geometric ran-
dom sum of independent, identically positive-valued
random variables with positive mean (see 6 and5 for
more details).
It makes sense to consider that the assertion in (4)
will not be valid if the non-random number n (being
degrees of freedom) is replaced by a geometric ran-
dom variableNp, p∈ (0,1). The next thereom 3.2 will
present the asymptotic behavior of a normalized geo-

metric sum p1/2 ∑Np
j=1

[
X2

j −1√
2

]
, when p ↘ 0+.

Proposition 3.2. The Laplace distributed random
variableL(0,1)with zero location parameter and unit
scale parameter should be presented in following form

L(0,1)
D
= p1/2 ∑Np

j=1 L
( j)
(0,1), (12)

whereL ( j)
(0,1), j ≥ 1are i.i.d. Laplace distributed ran-

dom variables with parameters 0 and 1, independent
ofNpforp ∈ (0,1)

Proof. We shall begin with showing that the charac-
teristic function of L ( j)

(0,1) at point p1/2t is given by

φ( j)
L(0,1)

(
p

1
2 t
)
=

(
1+

1
2

pt2
)−1

Then

φ
p

1
2 ∑

Np
j=1 L

( j)
(0,1)

(t) = hNp

(
f
L

( j)
(0,1)

(
p

1
2 t
))

=

pφL(0,1)

(
p

1
2 t
)

1− (1− p) f ( j)
L(0,1)

(
p

1
2 t
) =

(
1+

1
2

t2
)−1

= φL(0,1)
(t) for t ∈ (−∞,+∞).

According to the continuity theorem for characteris-
tic function (10, Theorem 9.1, page 238), the proof is
finished.

Theorem 3.2. Let the assumptions of the Theorem 3.1
hold. Then

p
1
2

Np

∑
j=1

[
X2

j −1
√

2

]
D→ L(0,1) as p ↘ 0+.

whereL(0,1)stands for the Laplace distributed random
variable with parameters 0 and 1, having characteristic
function in formφL(0,1)

(t) =
(
1+ 1

2 t2)−1.

Proof. Without loss of generality we may assume that

x2
j −1
√

2
=W 2

j for j ≥ 1

Then, for j ≥ 1, we have E
(

W 2
j

)
= 0 and D

(
W 2

j

)
=

1. Using Maclaurin series for characteristic function
φW 2

j

(
p

1
2 t
)
, we have

φW 2
j

(
p

1
2 t
)
= 1− 1

2
pt2 +o

(
pt2

2

)
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It can be verified that

φ

p

1
2 ∑

Np
j=1 W 2

j

(t) = E

eit p

1
2 ∑

Np
j=1 W 2

j

=

pφW 2
j

p
1
2 t


1− (1− p)φW 2

j

p
1
2 t


=

p

φ−1
Wj

p
1
2 t

−1+ p

=

p[
1− 1

2
pt2 +o

(
pt2

2

)]−1

−1+ p

.

(13)

Letting p ↘ 0+ , from (13), it follows that

φ
p

1
2 ∑

Np
j=1 W 2

j
(t)→

(
1+

1
2

t2
)−1

for t ∈ (−∞,+∞).

In view of the continuity theorem for characteristic
function (see 10 for more details), the proof is com-
plete.
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