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Stability of solution of a backward problem of a time-fractional
diffusion equation with perturbed order

NguyenMinh Dien1,2,∗, Dang Duc Trong1

ABSTRACT
The aim of this paper is of studying the stability of solution of a backward problem of a time-
fractional diffusion equation with perturbed order. We investigate the well-posedness of the back-
wardproblemwithperturbedorder for t>0. The results on theunique existence and continuitywith
respect to the fractional order, the source term as well as the final value of the solution are given.
At t=0 the backward problem is ill-posed and we introduce a truncated method to regularize the
backward problem with respect to inexact fractional order. Some error estimates are provided in
Holder type.
Key words: Caputo fractional derivative, stability of solution, ill-posed, regularization

INTRODUCTION
Let T > 0, α ∈ (0,1), Ω = (0;π) and be the standard Laplace operator, we consider the inhomogeneous
time-fractional diffusion equation

Dα
t u = ∆u+ f(x, t), (x, t) ∈ Ω× (0,T), α ∈ (0,1) (1.1)

u(0, t) = u(π, t) = 0, (1.2)
u(x,T) = g(x) x ∈ Ω, (1.3)

where Dα
t (.) is the Caputo fractional derivative with respect to t of the order define as

Dα
t u(x, t) =

{
1

Γ(1−α)

∫ t
0(t− τ)−α uτ (x,τ)dτ, 0 < α < 1

ut(x, t), α = 1
As is known, when α = 1 the problem (1.1) – (1.3) is ill-posed for any 0 ≤ t < Tand which was studied inmany
papers such as1,2. In the last decade, the fractional backward problem with 0 < α < 1 was investigated. In this
case, the fractional linear backward problem is stable for 0 < t < T and instable at t = 0 which is differential
from the case. Hence, regularization of solution at is in order. Ting Wei et al.3 and Tuan et al.4 used the
Tikhonovmethod to regularizing the homogeneous andnonhomogeneous problem. Yang et al.5 also regularize
the nonhomogeneous problem by the quasi-reversibility method. These papers used spectral method to obtain
an explicit formula for the solution and gave regularization directly on that formula.
In the listed paper, the fractional order is assume to be known exactly. But in the real world problem, the pa-
rameter is defined by experiments. Hence, we only know its values inexactly. Even if the parameters are known
exactly but are irrational, then we only have its approximate values to compute. Thus, a natural question that
arises in numerical computing is whether the solution of a problem is stable with such approximate parameters.
To the best of our knowledge, this question has still not been considered much. We can list here some papers.
Li and Yamamoto6 investigated the solution of a forward problem with Neumann condition. Trong et al.2

studied the continuity of solutions of some linear fractional PDEs with perturbed orders. In our knowledge,
until now, we do not find another paper which considers the backward problem with respect to the inexact
order.
Base on the discussion above, we will

1. prove the well-posedness of the problem (1.1) – (1.3) when 0 < t < T with respect to perturbed order.

2. regularization for the problem (1.1) – (1.3) at t = 0 with the inexact order.

Cite this article : Minh Dien N, Duc Trong D. Stability of solution of a backward problem of a time-
fractional diffusion equation with perturbed order. Sci. Tech. Dev. J.; 22(1):158-164.
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The remainder of the present paper is organized as follows. The second section provides mathematical pre-
liminaries, notations and lemmas which are used throughout the rest of this paper. In the third section, we
investigate for the well-posedness of the problem (1.1) – (1.3) when 0 < t < T. Lastly, we give a method to
regularization the problem (1.1) – (1.3) at t = 0

MATHEMATICAL PRELIMINARIES
In this section we set up some notations and some Lemma which use to proof the main results of the paper.
First, we list some properties of the Mittag-Leffler function

Eα,β (z) =
+∞

∑
k=0

zk

Γ(kα +β )
, z ∈ C

where α ,β ∈ C and Re(α)> 0. For short, we also denote Eα,1(z) = Eα (z)
Lemma 2.17 Letting α,λ > 0 and k ∈ N, we have

dk

dtk
Eα (−λ tα ) =−λ tα−kEα,α−k+1 (−λ tα ) , t ≥ 0

Lemma2.2 (8 Let 0<α∗ <α∗ < 1 and let α ,α ′ ∈ [α∗,α∗] then there exists a constantC > 0which dependent
only on α∗,α∗ such that

(i.)
C1

1+λ
≤ Eα (−λ )≤ C2

1+λ
, ∀λ ≥ 0

(ii.) 0 < Eα (−λ ),Eα,α (−λ )≤ C, ∀λ ≥ 0

(iii.)
∣∣∣Eα (−tα )−Eα ′

(
−tα

′
)∣∣∣≤ C

∣∣α −α ′∣∣ t ≥ 0

(iv.)
∣∣∣Eα (−λ tα )−Eα ′

(
−λ tα

′
)∣∣∣≤ Cλ lnλ

∣∣α −α ′∣∣ t ≥ 0,λ > 1

(v.)
∫ t

0

∣∣Q(α, t,τ)−Q
(
α ′, t,τ

)∣∣dτ ≤ Cλ
∣∣α −α ′∣∣ , λ > λ0 > 0

where Q(a, t,τ) = (t− τ)a−1Ea
(
−λ (t− τ)a).

THEWELL-POSEDNESS OF THE BACKWARD PROBLEMWITH t > 0
In this section, we give a condition to the backward problem have a unique solution and we also prove that the
solution is dependent continuously on the fractional order and the final data.
As is known, by Fourier series the problem (1.1)-(1.2) corresponding to the initial data u(x,0) = ξ (x) can be
transform to the integral equation as follows

u(x, t) =
+∞

∑
k=1

(
Eα (−λktα )ξk +

∫ t

0
(t− τ)α−1Eα,α (−λk(t− τ)α ) fk(τ)dτ

)
Φk(x)

Letting t = T and then by direct computation, we obtain

u(x, t) = ∑+∞
k=1

(
Eα (−λktα )
Eα (−λkTα )

Gk,f,g,α +Hk,f,α (t)
)

Φk(x) (3.1)

where Hk,f,α (t) =
∫ t

0(t− τ)α−1Eα,α (−λk(t− τ)α ) fk(τ)dτ, Gkf,g,α = gk −Hk,α,α (T)
Put

Gf,g,α =
+∞

∑
k=1

Gk,f,α Φk(x), Hf,α (t) =
+∞

∑
k=1

Hk,f,α (t)Φk(x).

From now on, we denote the solution of the backward problem (1.1)-(1.3) which satisfy (3.1) by uα,g, f to
emphasize the relationship of function u with the data α,g, f
In the following lemma, we give some estimates for G f ,α ,H f ,α (t).
Lemma3.1. Letα ∈ (0,1)Let gbe the final data such that g∈Hr(Ω) and the source function f∈L∞ (0,T;Hr(Ω))

then we have ∥∥Hf,α (t)
∥∥

r ≤
√

M∥f∥L∞(0,T;Hr(Ω)) (3.2)
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∥∥Gf,g,α
∥∥

r ≤
√

2
(
∥g∥r +

√
M∥f∥L∞(0,T;Hr(Ω))

)
(3.3)

where M = ∑+∞
k=1

1
λ 2

k
.

Proof. We have λ r
kfk ≤ ∑+∞

k=1 λ r
kfk ≤ ∥f∥L∞(0,T;Hr(Ω)), which deduces that

λ r
k
∣∣Hk,f,α (t)

∣∣ ≤
∫ t

0
(t− τ)α−1Eα,α (−λk(t− τ)α )λ r

kfk(τ)dτ

≤ ∥f∥L∞(0,T;Hr(Ω))

∫ t

0
(t− τ)α−1Eα,α (−λk(t− τ)α )dτ

≤ 1
λk

∥f∥L∞(0,T;Hr(Ω) )

due to the Lemma 1 we have
∫ t

0(t− τ)α−1Eα,α (−λk(t− τ)α )dτ =
1−Eα (−λktα )

λk
≤ 1

λk
.

The latter inequality yields

∥∥Hf,α (t)
∥∥2

r =
+∞

∑
k=1

λ r
kH2

k,f,α (t)≤ ∥f∥L∞(0,T;Tr(Ω))

+∞

∑
k=1

1
λ 2

k
= M∥f∥2

L∞(0,T;Hr(Ω)).

This implies the inequality (3.2). To prove the inequality (3.3), we note that∣∣Gk,f,g,α
∣∣2 ≤ 2

(
|gk|2 +

∣∣Hk,f,α (T)
∣∣2) ,

this follows ∥∥Gf,g,α
∥∥2

r ≤ 2
(
∥g∥2

r +M∥f∥2
L∞(0,T;Hr(Ω))

)
≤ 2

(
∥g∥r +

√
M∥f∥L∞(0,T;Hr(Ω))

)2
.

This completed the proof of the Lemma.
Theorem 3.2. (Well-posedness) Let α ∈ (0,1) Let g be the final data such that g ∈ Hr(Ω) and the source
function f ∈ L∞(0,T;Hr(Ω)). Then we have
(i). If r = 0 then the problem (1.1)-(1.3) has a unique solution

u ∈ L2
(

0,T;H1
0(Ω)∩H2(Ω)

)
which is given by

u(x, t) =
+∞

∑
k=1

(
Eα (−λktα )
Eα (−λkTα )

Gk,f,g,α +Hk,f,α (t)
)

Φk(x)

where Gk,f,g,α ,Hk,f,α (t) are defined in (4.1). Moreover, if r = 2 then the problem (1.1)-(1.3) has a unique
solution

u ∈ C
(
[0,T];L2(Ω)

)
∩C

(
(0,T);H1

0(Ω)∩H2(Ω)
)

(ii). If r > 0 then, for any t > 0 we have∥∥uα,g,f(., t)−uα ′,g′,f′(., t)
∥∥≤ Ct−2α∗

(∥∥g−g′
∥∥2

r +
∥∥f− f′

∥∥2
L∞(0,T;Hr(Ω))

+
∣∣α −α ′∣∣ 2

4+r
)

where C independent of |α −α ′| , |g−g′| , |f− f′|
Proof.
(i). The proof of Part (i) can be found in4.
(ii). The proof is subdivided into two steps.

• Step 1:
∥∥uα,g,f(., t)−uα ′,g,f(., t)

∥∥2 ≤ C1t−2α∗ (λ 8
p |α −α|2 +λ−2r

p
)

• Step 2:
∥∥uα ′,g,f(., t)−uα ′,g′,f′(., t)

∥∥2 ≤ C2t−2α∗
(
∥g−g′∥2

r +∥f− f′∥2
L∞(0,T;Hr(Ω))

)
.
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Using the triangle inequality and combining Step 1 with Step 2 we obtain the desired.
Indeed, from Step 1 and Step 2, we choose p such that p =

[
|α −α ′| 1

8+2r
]
+1, then∥∥uα ′,g,f(., t)−uα ′,g′,f′(., t)

∥∥2

≤ Ct−2α∗
(∥∥g−g′

∥∥2
r +
∥∥f− f′

∥∥2
L∞(0,T;Hr(Ω))

+λ 8
p
∣∣α −α ′∣∣2 +λ−2r

p

)
≤ Ct−2α∗

(∥∥g−g′
∥∥2

r +∥f− f∥2
L∞(0,T;Hr(Ω))+ |α −α|

2
4+r

)
Therefore, we only prove Step 1 and Step 2 in detail.
The proof of Step 1. Using the Cauchy-Schwarz inequality, we have∥∥uα,g,f(., t)−uα ′,g,f(., t)

∥∥2 ≤ 2I1(t)+4(I2 + I3) (3.4)

where

I1(t) =
+∞

∑
k=1

∣∣Hk,f,α (t)−Hk,f,α ′(t)
∣∣2 = ∥∥Hk,f,α (., t)−Hk,f,α ′(., t)

∥∥2
,

I2 =
+∞

∑
k=1

(
Eα (−λktα )
Eα (−λkTα )

)2 ∣∣Gk,f,g,α −Gk,f,g,α ′
∣∣2 ,

I3 =
+∞

∑
k=1

 Eα (−λktα )
Eα (−λkTα )

−
Eα
(
−λktα

′
)

Eα ′
(
−λkTα ′)

2

G2
k,f,g,α

and Hk,f,α (t),Gk,f,α are defined in (3.1).
Estimating for I1. We can use Lemma 2.2 to obtain∣∣Hk,f,α (t)−Hk,f,α ′(t)

∣∣≤ Cλk
∣∣α −α ′∣∣≤ Cλp

∣∣α −α ′∣∣ , ∀k ≤ p

due to λk ≥ λ1 for any k ∈ N, which imply that

I1(t)

= ∑p
k=1

∣∣Hk,f,α (t)−Hk,f,α (t)
∣∣2 +2∑+∞

k=p+1

(∣∣Hk,f,α (t)
∣∣2 +Hk,f,α ′ (t)|2

)

≤ Cpλ 2
p |α −α ′|2 +λ−2r

p ∑+∞
k=p+1 λ 2r

k

(∣∣Hk,f,α (t)
∣∣2 + ∣∣Hk,f,α ′(t)

∣∣2)

≤ Cpλ 2
p |α −α ′|2 +λ−2r

p

(∥∥Hk,f,α (., t)
∥∥2

r +
∥∥Hk,f,α ′(., t)

∥∥2
r

)

:= C1

(
pλ 2

p |α −α ′|2 +λ−2r
p

)
.

(3.5)

Estimating for I2. From the Lemma 2.2, we have

0 <
Eα (−λktγ )
Eα (−λkTγ )

≤ A1

(
T
t

)γ
≤ A1

(
T
t

)α∗

= A2t−α∗
,∀γ ∈ (0,α∗) , (3.6)

where A1,A2 are independent of α,λk.

Since
∣∣Gk,f,g,α −Gk,f,g,α ′

∣∣= ∣∣Hk,f,α (T)−Hk,f,α ′(T)
∣∣, therefore, from (3.5) and (3.6), we obtain

I2 ≤ A2t−2α∗
I1(T)≤ C2t−2α∗

(
pλ 2

p |α −α ′|2 +λ−2r
p

)
. (3.7)

Estimating for I3. From the Lemma 2.2, for any p > 1 we have∣∣∣Eα (−λktα )Eα ′

(
−λkTα ′

)
−Eα (−λkTα )Eα ′

(
−λktα

′
)∣∣∣

≤ C30

(∣∣∣Eα (−λkTα )−Eα ′

(
−λkTα ′

)∣∣∣+ ∣∣∣Eα (−λktα )−Eα ′

(
−λktα

′
)∣∣∣)

≤ C31λp lnλp
∣∣α −α ′∣∣ .
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whereC31 is independent of |α −α ′| and p Thus we get∣∣∣∣∣∣ Eα (−λktα )

Eα (−λkT α )
−

Eα
(
−λktα ′

)
Eα ′
(
−λkT α ′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Eα (−λktα )Eα ′

(
−λkTα ′

)
−Eα (−λkTα )Eα ′

(
−λktα

′
)

Eα (−λkTα )Eα ′
(
−λkTα ′)

∣∣∣∣∣∣
≤ C32λ 3

p lnλp
∣∣α −α ′∣∣

Combining (3.6) with the latter inequalities, we deduce

I3 =
p

∑
k=1

 Eα (−λktα )
Eα (−λkTα )

−
Eα
(
−λkta

′
)

Eα ′
(
−λkTα ′)

2

G2
k,f,g,α

+
+∞

∑
k=p+1

 Eα (−λktα )
Eα (−λkTα )

−
Eα ′

(
−λktα

′
)

Eα ′
(
−λkTα ′)

2

G2
k,f,g,α

≤ C33
∥∥Gf,g,α ′

∥∥2 λ 3
p lnλp

∣∣α −α ′∣∣+C34tα
∗ +∞

∑
k=p+1

G2
k,f,g,α ′

Using Lemma 3.1, we have

I3

≤ C35λ 6
p lnλ 2

p |α −α ′|2 +C35λ−2r
p t−2α∗

∑+∞
k=p+1 λ 2r

k G2
k,f,g,α

≤ C3
(
λ 8

p |α −α|2 +λ−2r
p t−2α∗)

(3.8)

due to lnλp ≤ λp. Since 1 ≤ p ≤ λp, then from (3.5), (3.7) and (3.8), we obtain∥∥uα,g,f(., t)−uα ′,g,f(., t)
∥∥2 ≤ C1t−2α∗ (λ 8

p |α −α|2 +λ−2r
p
)

(3.9)

This completed the proof of Step 1. We now proof Step 2.
The proof of Step 2.∥∥∥uα ′ ,g,f(., t)−uα ′ ,g′ ,f′ (., t)

∥∥∥2

≤
+∞

∑
k=1

(
Eα ′

(
−λktα

′)
Eα ′

(
−λkTα ′

) (Gk,f,g,α ′ −Gk,f′ ,g′ ,α ′ )+(Hk,f,g,α ′ (t)−Hk,f′ ,g′ ,α ′ (t))

)2

≤ 2
+∞

∑
k=1

(
Eα ′

(
−λktα

′)
Eα ′

(
−λkTα ′

) ∣∣∣Gk,f−f′ ,g−g′ ,α ′

∣∣∣2 + ∣∣∣Hk,f−f′ ,α ′ (t)
∣∣∣2)2

We can use the Lemma 2.1 and (3.6) to obtain∥∥∥uα ′ ,g,f(., t)−uα ′ ,g′ ,f′ (., t)
∥∥∥2

≤ 2
[
C36t−2α∗

((∥∥g−g′
∥∥2

r +M
∥∥f− f′

∥∥
L∞(0,T;Hr(Ω))

))
+M

∥∥f− f′
∥∥2

L∞(0,T;Hr(Ω))

]
≤ C2t−2α∗

((∥∥g−g′
∥∥2

r +
∥∥f− f′

∥∥
L∞(0,T;Hr(Ω))

))
.

This completed the proof of Step 2 and the proof of the Theorem.
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REGULARIZATION AND ERROR ESTIMATES FOR BACKWARD PROBLEMAT
t = 0
In this section, we propose a regularization method to regularize solution of the backward problem at t=0 we
will give some error estimates in the case of inexact order.
Let ε ∈ (0,1), and αε ∈ (0,1),gε ∈ Hr(Ω), fε ∈ L∞ (0,T;Hr(Ω)) be measurement data such that the following
condition

|α −αε |< ε,∥g−gε∥r < ε,∥f− fε∥L∞(0,T;Hr(Ω)) < ε. (4.1)

We approximate the solution of the backward problem at t=0 by the problem

up
α,f,f(x) =

p

∑
k=1

Gk,f,g,α
Eα (−λkTα )α Φk(x), (4.2)

where p is the regularization parameter and Gk, f ,g,α is defined in (3.1).
First, we prove that the problem (4.2) is well-posed with respect to the fractional order.
Theorem 4.1 Let 0 < α∗ < α∗ < 1 and let α,αε ∈ [α∗,α∗]. Let g,gε ∈ Hr(Ω) and f, fε ∈ L∞ (0,T;Hr(Ω)) .

Then we have

up
α,f,g (.)−up

αε ,fε ,gε
(.)∥ ≤ Dλ 9/2

p

(
|α −αε |+∥g−gε∥r +∥f− fε∥L∞(0,T;Hr(Ω))

)
,

where D is independent of α −αε ,g−gε , f − fε .
Proof. Using Lemma 2.2, we have∣∣∣∣ 1

Eα (−λkTα )
− 1

Eαc (−λkTαε )

∣∣∣∣≤ C43λ 4
p |α −αε | (4.3)

for any k ≤ p. This follows that∣∣∣∣∣ 1
Eα (−λkTα )

− 1
Eαε (−λkTαε )

∣∣∣∣∣≤ C43λ 4
p |α −αε |,

whereC43 is independent of α,αε , p.
Since ∣∣Hk,f,α −Hk,fe,αε

∣∣2 ≤ 2
(∣∣Hk,f,α −Hk,fε ,α

∣∣2 + ∣∣Hk,f,α −Hk,fe,αε

∣∣2)
= 2

(∣∣Hk,f−f,α
∣∣2 + ∣∣Hk,f,α −Hk,fε ,αε

∣∣2)
we can use the same method of estimating of (3.5) and Lemma 2.1 to get

∑p
k=1

∣∣Gk,f,g,α −Gk,fε ,gε ,αε

∣∣2
≤ 4

(
∑p

k=1 |gk −gek|2 +
∣∣Hk,f−fε ,α

∣∣2 + ∣∣Hk,f,α −Hk,fε ,αε

∣∣2)

≤ 4
(
∥g−gε∥2 +∥f− fε∥2 +pCλ 2

p |α −αε |2
)

(4.4)

where C is independent of α,αε , p.We combine (4.3) and (4.4) to obtain∥∥∥up
α,f,g(.)−up

αε ,fε ,gε
(.)
∥∥∥2

≤ 2

(
p

∑
k=1

∣∣∣∣ Gk,fε ,gε ,αε

Eαε (−λkTαε )

∣∣∣∣2 + p

∑
k=1

∥ 1
Eα (−λkTα )−

− 1
Eαε (−λkTαε )

)
Gk,f,g,α

∣∣2)
≤ 2Cλ 2

p

(
∥g−gε∥2 +∥f− fε∥2 +pCλ 2

p |α −αε |2
)
+C2

43pλ 8
p |α −αε |2

≤ C44λ 9
p

(
∥g−gε∥Hr(Ω)+∥f− fε∥L∞(0,T;Hr(Ω))+ |α −αε |

)2
,
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due to p ≤ λp, whereC44 is independent of g−gε ,α −αε ,p.This imply the result of the Theorem.
Theorem 4.2 Let 0 < α∗ < α∗ < 1 and let α,αε ∈ [α∗,α∗] . Let g,gε ∈ Hr(Ω) and f, fε ∈ L∞ (0,T;Hr(Ω)) be
the measurement data which satisfy (4.1). We suppose further that ∥u(.0∥r ≤ E Choose p = [ε

1
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we have the following estimate
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Using the triangle inequality, Theorem 4.1 and the latter inequality, we obtain∥∥∥uα,f,g(.)−up
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where Q0 = max{E,3D}. Choose p = [ε

1
2r+9 ]+1, and notice that λp = p2, we obtain∥∥∥uα,f,g(.)−up
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where Q is independent of ε This completes the proof of the Theorem.

CONCLUSIONS
In this paper, we investigate a backward problem for a non-homogeneous a time-fractional diffusion equation.
For the well-posed problem part, the unique existence and continuity with respect to the fractional order, the
source term as well as the final value of the solution are given. For the ill-posed problem part, we propose the
truncated method for obtaining a regularized solution. The convergence results obtained under the Holder
type. In the future, we will consider the problem for a class of fractional equation with both time and space
fractional order with linear and/or nonlinear source.
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