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ABSTRACT
Introduction: Recognizing human activity in a daily environment has attracted much research in
computer vision and recognition in recent years. It is a difficult and challenging topic not only inas-
much as the variations of background clutter, occlusion or intra-class variation in image sequences
but also inasmuch as complex patterns of activity are createdby interactions amongpeople-people
or people-objects. In addition, it also is very valuable for many practical applications, such as smart
home, gaming, health care, human-computer interaction and robotics. Now, we are living in the
beginning age of the industrial revolution 4.0 where intelligent systems have become the most
important subject, as reflected in the research and industrial communities. There has been emerg-
ing advances in 3D cameras, such as Microsoft's Kinect and Intel's RealSense, which can capture
RGB, depth and skeleton in real time. This creates a new opportunity to increase the capabilities
of recognizing the human activity in the daily environment. In this research, we propose a novel
approach of daily activity recognition and hypothesize that the performance of the system can be
promoted by combining multimodal features. Methods: We extract spatial-temporal feature for
the human body with representation of parts based on skeleton data from RGB-D data. Then, we
combine multiple features from the two sources to yield the robust features for activity represen-
tation. Finally, we use the Multiple Kernel Learning algorithm to fuse multiple features to identify
the activity label for each video. To show generalizability, the proposed framework has been tested
on two challenging datasets by cross-validation scheme. Results: The experimental results show
a good outcome on both CAD120 and MSR-Daily Activity 3D datasets with 94.16% and 95.31% in
accuracy, respectively. Conclusion: These results prove our proposed methods are effective and
feasible for activity recognition system in the daily environment.
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INTRODUCTION
Recognizing human activity is a challenging and en-
gaging task in the community of computer vision re-
search. It is one of the valuable research areas in com-
puter vision with many applications in real-world,
such as surveillance system, HCI system, smart city,
smart home, gaming, health care and robotics. The lit-
erature reviews of human activity recognition may be
found in some previous publications 1–4. In general,
the methods to the problem of human daily activity
recognition contain four major steps:
i) feature detection,
ii) descriptor extraction,
iii) activity representation, and
iv) pattern classification.
In traditional approaches, researchers have focused
on the descriptors that are extracted from image se-
quences that extend the spatial information in the 2D
image to the spatial-temporal information. The stud-
ies have demonstrated positive results for human ac-
tivity recognition.

In recent years, emerging 3D cameras such as Mi-
crosoft’s Kinect and Intel’s RealSense, show they can
capture RGB, depth and skeleton in real time. This
confers a unique opportunity to increase the capabili-
ties of recognizing human activity in the daily envi-
ronment. Many authors have exploited 3D spatial-
temporal descriptors for depicting and classifying hu-
man daily activity 5–12. In addition, Kinect can capture
skeleton data that contain joints on the human body
in real time. This helps to detect the bounding box
for the individual human body and body parts easily,
as well as remove the noise when extracting features.
These approaches based on 3D cameras could be di-
vided into four types:

i) RGB-representation approaches,

ii) depth-representation approaches,

iii) skeleton-representation approaches, and

iv) hybrid- representation approaches.
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Recognizing human activity from RGB im-
age sequences
The approaches in this group can be divided into two
kinds of categories: global features and local features.
The early global features were introduced by Bobick
and Davis 13. They proposed two motion patterns:
MEI and MHI. These templates were computed into
HuMoments for human activity representation. Sim-
ilarly, Xinhua Sun 14 used Zernike moments for activ-
ity representation. These approaches, based on the
global features, encode much information about the
activity. However, they were sensitive to viewpoint,
complex background, and occlusion. In order to over-
come these above problems, the local features were
proposed for activity representation. Many authors
have introduced local spatial-temporal descriptors,
such as HOG3D, HOF 15,16, SURF 3D 17, and SIFT
3D 18, for temporal information to obtain activity rep-
resentation. These descriptors were the extended ver-
sions of HOG 19, SURF 20, and SIFT 15 that were very
successful in solving image classification. The most
successful method based on local features was dense
trajectories 21,22 that extracted HOG/HOF/MBH for
each interest point. However, these dense trajectories
or 3D gradient features have a large computational
cost in feature extraction.

Recognizing human activity fromdepth se-
quences
Approaches such as methods based on extending
from the color image have been used 23,24. For their
similarly to MHI 13, Yang et al. 25 proposed DMM fea-
tures that used the depth images projected on three
orthogonal planes. Then, HOG 19 operation was ap-
plied to have a final vector for activity representation.
Instead of accumulating the whole depth images, Li
et al. 26 sampled around the 3D points of the bound-
aries that were projected on three orthogonal planes.
In order to represent 4D information from depth im-
ages, Wang et al. 27 proposed the random occupancy
pattern and Vieira et al. 23 introduced STOP descrip-
tor. The descriptors were based on the idea of local
features in RGB image. Many holistic features were
similar to RGB image, such as HON4D 28 and SNV 29.
However, these algorithms have a high computational
cost and high dimensionality.

Recognizing human activity from skeleton
sequences
In addition to RGB and depth channels that are cap-
tured from 3D cameras, it is possible to capture 3D
positions of skeleton joints with high precision in real

time. This opens a new opportunity for recognizing
activity in real time because the skeleton data is small
and easy to extract features for representation. Xia et
al. 30 proposed a HOJ3D descriptor to represent shape
for each frame. The joints of skeletal data were pro-
jected into a spherical axis so that the descriptor is ro-
bust to the changes of view. Then, they used HMM
model to encode the temporal information from se-
rial feature sequences. Xiaodong et al. 31 introduced
an EigenJoints descriptor which fuses activity infor-
mation containing the static features of shape and the
dynamic features of movement, based on differences
of joints in positions, and Principal Component Anal-
ysis (PCA) to reduce the dimensionality of data. They
usedNaïve-Bayes-Nearest-Neighbor (NBNN) to clas-
sify activity using informative frame selection.

Recognizing human activity from multiple
modals
The approaches based on combining multiple de-
scriptors are extracted from RGB, depth and skele-
tal data 8–10,12,32,33. Zhao Yang 24 proposed the method
that extends from the RGB approach by using local
features. Firstly, the STIP method was applied to de-
tect salient points. Then, HOG and HOF descrip-
tors were used for RGB channel, and LDP descrip-
tor was extracted from the depth channel. These fea-
tures were used to yield visual words for activity rep-
resentation. Wang et al. 34 combined skeletal data and
depth channel to build ROP around each joint of the
skeleton on 3D point cloud. Similarly, Sung et al. 35

used the joints of the skeleton to represent the individ-
ual person’s body, with shaped parts as well as move-
ment. In order to represent the characteristics of ap-
pearance, the authors extracted HOG from RGB and
depth channel for the individual’s body and parts at
each frame. Then, maximum entropy Markov model
(MEMM) was adapted to recognize a daily activity
based on time series of sub-activities. L. Liu 36 pro-
posed the GBGP approach based on evolution pro-
gramming with the set of filters to extract the descrip-
tors from RGB-D sequences automatically. The fea-
ture vectors were concatenated into a final vector for
activity representation. Then, a support vector ma-
chine (SVM) classier was adapted to the activity clas-
sification phase. PichaoWang 37 used deep learning to
fuse RGBD sequences as on an entity to represent hu-
man activity from CNN. However, the deep learning
methodologies have high computational cost, require
high configuration in hardware, and require a lot of
data that do not suit in some real-world applications.
From the above review, we conclude that the fea-
ture extraction is a crucial step for obtaining a system
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Figure 1: Some sample frames are extracted from Kinect. (a) Microsoft Kinect, (b) RGB, depth, and skeleton
data.

that recognizes human daily activity with high perfor-
mance. It is necessary to choose a set of appropriate
descriptors that depict the discriminative characteris-
tics for each activity. In our research, we concentrate
on recognizing human daily activities which are cap-
tured from Microsoft Kinect (some samples frames
can be seen in Figure 1). We propose the methodol-
ogy for daily activity framework and hypothesize that
the performance of the system can be promoted by
combining multimodal features.
Firstly, we use skeleton data to detect the bounding
boxes of the human body and parts, such as head,
hands and feet. Then, we extract their shape, appear-
ance, and motion feature to describe the human at
each frame from RGB and depth channels. Next, we
model the change of shape, appearance, and motion
by pooling the frame descriptors in a matrix feature
for each channel. After that, we apply HOG operation
the second time on the matrix to obtain final vector
feature for RGB and depth for activity representation.
Both set of features are fused using the Multiple Ker-

nel Learning technique at the kernel levels for human
activity classification.
To sum up, the major contributions of our work are
recapitulated as follows:

• A novel methodology for daily human activ-
ity recognition using the utility of multiple data
sources fromMicrosoft’s Kinect.

• A new spatial-temporal feature for motion de-
scriptor named HOF2 that is inspired HOG2.

• Multiple kernel learning for activity classifica-
tion of RGB-D and skeleton sequences.

• Evaluation of our proposed framework by per-
forming experiments on two challenging daily
activity datasets, namely CAD-120 and MSR-
Daily Activity 3D.

METHODS
In this section, we show our proposed framework ar-
chitecture for human activity recognition system in
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the daily environment. To be able to recognize what
activities a person is doing, we rely on the shape, ap-
pearance, and the series of movements that he/she
is performing during the course of the activity. The
flowchart of our framework for recognizing human
daily activity is shown as follows in Figure 2.

Shape and Appearance Features
Thefirst characteristic often used in activity represen-
tation is the shape and appearance of the human body
when performing the activity. In this work, we ex-
tract HOG2 30 to represent the changes in shape and
appearance of hand activity in the spatial and tempo-
ral term.
Let I(x,y) as a m x n depth image, the gradient Gx,
and Gy are calculated on I(x,y) by 1D mark [ -1,0,1]
to achieve amatrixG (i.e. computedmagnitude of Gx,
and Gy ,), matrix θ is quantized orientations from Gx,
andGy, andB denotes the number of bins by extracted
histograms.
I(x,y) is divided intoMxN blocks which overlap 50%
each other. At each block, we compute an orientation
histogram hswith B bins. LetGsand θsbe magnitude
matrix and orientation matrix at sth block with s ∈
{1, ...,M · N} , so qth bin of histogramhs is denoted
as:

hs(q) =
∑
x,y

GS
x,y . 1[θS(x, y) = θ]

Where:
. θ ∈ {−π + 2π

B
: 2π

B
: π}

. 1 is the indicator function

. q ∈ {1, ..., B}
After that, the local histogram hS of sth block is nor-
malized by L2-norm:

hS → hS /
√

IIhSII22 + ∈

By 50% overlapping, we can obtain completely local
spatial information of each block and express correla-
tion of blocks. Finally, HOG histograms of bocks are
concatenated to form the HOG descriptor ht at frame
t ∈ {1, ..., T}. In this work, we extract HOG for 7
bounding boxes, in which, 1 is for the whole body, 6
for 6 joints (left arm, left hand, right arm, right hand,
head, and torso of each frame) (Figure 3).
Similar, we collect HOGhistograms ht over images to
form a 2Dmatrix called S . Changes of the descriptors
according to rows in S represent the changes of the
shape and appearance of the activity.
On HOG matrix S, we apply pooling techniques to
summarize spatial feature of a depth video. Pool-
ing techniques can help avoid over-fitting in the next

recognition step. One of two kinds of pooling tech-
niques (max pooling and average pooling) is used to
get the first spatial component hS of the final feature.
In this work, we adopted the max pooling technique
in our experiments.
Each row in Smatrix is HOG feature in each frame, so
when calculating derivative along row vectors of S, the
result represents the change of body shape in the tem-
poral term. Therefore, HOG algorithm is applied one
more time on S matrix to extract the second temporal
component hT of the final feature histogram.

hT = HOG(S) = HOG



h1

...
hT




Thefinal feature h is formed by concatenating hS and
hT and is normalized by L2-norm.

h = [hT ;hS]

Thefinal featureh is calledHOG2 becauseHOGalgo-
rithm is applied twice as Figure 4. In our case, the size
ofHOGblockM, N, and theB bins of the histogram
features are fixed in two times HOG applying, so the
size of HOG2 feature is 1 x (2 ·M ·N · B). There-
fore, HOG2 feature describes the two important ele-
ments in activity representation, which are the shape
and temporal shape when performing the activity.

HOF2
Since motion is an important source of information
for activity representation, we introduce a descriptor,
which is extracted from Optical Flow and HOF, to
represent the changes of motion flow of activity in the
spatial and temporal term.
Let I(x, y)as a frame of depth sequence with the size
of m x n. Farneback dense optical flow estimation
algorithm 16 is applied on two continuous frames to
extract optical flow image IOF (x, y).

IOF (x, y) = OF (It−1(x, y), It(x, y)) (7)

where:
* IOF (x, y) is an optical flow image
* t ∈ {2, ... , T }
*OF is the Optical flow estimation function.
After that, IOF (x, y) is split into M x N blocks
with 50% overlapping. At each block, a magnitude
matrix Gs and an orientation matrix θS with S ∈
{1, ... , M ·N } are calculated to build a B-bin
orientation histogram hS

OF . Finally, an orientation
matrix ht is created by concatenation local orienta-
tion histograms. In this work, we extract HOF for 7
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Figure 2: Flowchart of our methodology for human daily activity fromMicrosoft’s Kinect.

Figure 3: The HOG extraction at each frame.

Figure 4: Illustration of HOG2 extraction for the person’s bodyand parts for each video.
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Figure 5: The HOF extraction at each frame.

bounding boxes in which are 1 is for the whole body
and 6 for 6 joints (left arm, left hand, right arm, right
hand, head, and torso for each frame) (Figure 5).
An orientation histogram matrix SOF is formed
by collecting orientation histograms over frames.
Changes of the horizontal vector ofSOF represent the
changes in the movement of the activity.
On matrix SOF , pooling techniques (which are men-
tioned in the previous section) are applied to obtain
the first spatial component hOFS of the HOF2 fea-
ture. Then, HOG operator is used one more time
onSOF to represent the second temporal component
hOFT of the HOF2 feature.
h

OFT=HOG(SOF ) = HOG




h1

...
hT−1




The final HOF2 feature h is formed when we con-
catenate hOFS and hOFT and is normalized by L2-
norm, L1-sqrt or L2-Hys 24. The HOF2 extraction
process is similar to the HOG2 extraction method, so
the final extracted feature is named HOF2 as in Fig-
ure 6. In this case, the size of block M, N, and the
B bin of histogram feature are fixed, so the size of h is
1 x (2 · M · N · B). Thus, HOF2 feature describes
the two important elements in activity representation
are motion and temporal dynamics when performing
the activity.

Activity Representation

In the previous step, we have presented HOG2 and
HOF2 descriptors that are used to depict activi-
ties. These descriptors are spatial-temporal his-
tograms to show changes in shape and movement
when performing activities. In this work, we ex-
tract HOG2 and HOF2 for both RGB and depth
channels. As the results, we have 4 feature vectors:
hRGB
HOG2, h

RGB
HOF2, h

D
HOG2 andhD

HOF2 for each activ-
ity. Thus, we use the feature set for activity represen-
tation instead of a fixed length vector like traditional
methods. In order to classify the daily activities, we
can use early or late fusion techniques.

Activity Classification

In the previous section, our proposed method for
daily activity was represented. Here, a set of feature
vectors are used instead of a fixed length vector of fea-
tures as in the previous approaches. Almost all classi-
fication algorithms accept input vectors that have the
same fixed length in order to train and test the model
for activity classifiers. Therefore, we can concatenate
the set of vectors into a final vector to build themodel.
This approach may run into the problem of dimen-
sionality, causing the performance of the system to
fall. To overcome this problem, we use the multiple
kernel learning (MKL) 38 methods to fuse the multi-
ple features based on building weights that encode the
relation of features from multiple sources. The main
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Figure 6: Illustration of HOF2 extraction for a person’s body and parts from each video.

idea of MKL algorithm is to use many kernel func-
tions so that multiple feature sources are fused into
a nonlinear manner instead of linear combination in
late fusion technique. Moreover, the MKL method
builds the model by using training data to create good
weights to select useful information pieces of the fea-
ture vectors from multiple sources. This helps to im-
prove the accuracy rate of the daily activity recogni-
tion system and utilizes the advantages frommultiple
data sources.
In the study, we adopt the SimpleMKL method 38

which is deployed by using SVM with the different
kernel functions. The algorithm yields the distin-
guishing weights to combine the multiple feature vec-
tors from multiple SVM classifiers with multiple ker-
nel functions. Traditional SVM classier only applies
for binary classification problems. To be applicable
for multiclass problems, we use the one-against-one
technique that is proposed in the published study 39.

EXPERIMENTS
Our approach is experienced on two benchmark daily
activity datasets, such as CAD 120 and MSR-Daily
Activity 3D. The datasets are recorded by Microsoft
Kinect to capture human activity in the daily environ-
ment.
For the classification phase, we adopt the SimpleMKL
two kernel functions to combine themultiple features,
extracted from RGBD data. The two kernel functions
are defined as follows:

KGaussian(x, y) = e−∥x−y∥2/δ2

KPoly(x, y) =< x, y >d, d ∈ N

WhereKGaussian is a Gaussian function and σ is the
kernel parameter; we adopted σ2 ∈ {0.1, 1, 2};
whereKPoly(x, y) is a polynomial function and d is
the kernel parameter, we adopted d ∈ {1, 2, 3}.
Thus, we have 6 parameters for two kernels. We adopt
the Leave-One-Out-Subject scheme of evaluation so

that we achieve fair comparisons with the other ap-
proaches.
We also evaluate these different approaches on the
datasets to investigate in greater detail the nature of
the problem of daily human recognition. Lastly, we
trust that our evaluations in this research study will
encourage innovative development and increase stud-
ies on daily activity recognition algorithms.

CAD 120 Dataset
TheCAD120 dataset 33 consists of 10 different activity
classes where each activity is executed three times. It
has a total of 120 samples and is performed by four
people. These peoples have to perform an activity
many times and interact with different things. Some
frames of the dataset are seen in Figure 7.

MSR Daily Activity 3D Dataset
MSR-Daily Activity 3D dataset 27 consists of 16 dif-
ferent daily activities in the living room environment.
Each activity class has 160 samples and is performed
by two different contexts:
i) a standing human and
ii) a sitting human (on a sofa).
This dataset is more difficult than the others due to
human-object interaction in frequency when people
are performing the activities. Some frames of the
dataset are seen in Figure 10.

DISCUSSION
In this work, we use the utility of multimodal sys-
tems for daily activity representation. From the anal-
ysis of the previous approaches, we observed that no
one kind of feature can recognize all activity datasets.
Therefore, we should combine different kinds of fea-
tures to improve the performance of the daily activ-
ity system. Specifically, we extract HOG2 and HOF2
spatial-temporal features for RGB-Depth data based
skeleton joints that can depict shape, appearance, and
motion of humans when performing the activities. As
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Figure 7: Examples of frames sampled from CAD 120 Dataset.

Figure 8: The different cell sizes in theHOG2 andHOF2 features for daily activity classificationwith SVMon
CAD 120 dataset.

Table 1: The experimental results of the
different methods on CAD 120 dataset

Method Accuracy (%)

RGB + Skeleton + SVM 73.34

Depth + Skeleton + SVM 75

RGB-D + Skeleton + SVM 88.34

RGB-D + Skeleton + MKL 94.16
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Table 2: Comparison of results with the
state-of-the-art methods

Method Accuracy (%)

Salient Proto-Objects 7 78.2

Object Affordances 33 84.7

Spatio-Temporal Structure 11 93.5

RGB-D + Skeleton + SVM 88.34

RGB-D + Skeleton + MKL 94.16

Figure 9: The different cell sizes in theHOG2 andHOF2 features for daily activity classificationwith SVMon
MSR-Daily Activity 3D dataset.

Table 3: The experimental results ofthe different methods onMSR-Daily Activity 3D dataset

Method Accuracy (%)

RGB + Skeleton + SVM 80.63

Depth + Skeleton + SVM 84.38

RGB-D + Skeleton + SVM 90.94

RGB-D + Skeleton + MKL 95.41

well, HOG2 and HOF2 also present the changes in
shape and motion in the time axis. In order to clas-
sify a set of features for activity representation, mul-
tiple kernel learning approaches are used to find the
best discriminative weights for each descriptor in the
feature set. So, the performance of the activity recog-
nition system is improved when usingmultiple modal
features.
To evaluate the parameters of the proposed ap-

proach, we also perform different experiments on two
datasets. The HOG2 and HOF2 descriptors (men-
tioned inMethods) with different sizes of the cell were
compared in Figures 8 and 9 when classifying with
SVM.The results are shown as cell size of 4x4 in com-
puting the HOG2 andHOF2; representation is shown
the best results on the two datasets. We also note that
different sizes have different results on the datasets.
The fusion of RGB and depth descriptors shows best
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Table 4: Comparison of results with the
state-of-the-art approaches onMSR-Daily
Activity 3D dataset

Method Accuracy (%)

Actionlet Ensemble Model 27 0.857

HON4D 28 0.800

SVN 29 0.862

RGGP 36 0.904

RGB-D + Skeleton + SVM 90.94

RGB-D + Skeleton + MKL 95.31

results across datasets. We also evaluate the different
proposed methods when classifying with SVM and
MKL. As shown in Tables 1 and 3, the MKL method
was shown to work well and improve recognition rate
significantly.
Tables 2 and 4 compared our experimental results
with the state-of-the-art methods of two challeng-
ing datasets. On the CAD120 dataset (Table 2), we
only improve slightly on accuracy compared to Kop-
pula’s methods 33, which is 0.56%. As seen by the
MSR Daily Activity 3D in Table 4, our accuracy rate
is 95.31%, more than the best result 36 by 5.27%. This
increase is due to our approaches to only extract the
features from the interest regions based on skeleton
data to remove a huge amount of redundant informa-
tion. Moreover, our approach involves the addition of
temporal adjacent features from matrix features. The
experimental results show that our proposedmethods
are efficient, theoretically feasible, and practical.

CONCLUSIONS
In this work, we have discovered the utility of the
multimodal approach for the problem of daily hu-
man activity recognition in RGB, depth, and skele-
ton sequences. The activity descriptors are extracted
from shape, appearance, and motion in RGB, depth,
and skeleton data. We use skeleton joints to capture
regions of interest when performing activities; these
regions include body, hands, foots, etc. Moreover,
we yield a robust activity representation by fusion of
HOG2 and a new motion feature (called HOF2), ag-
gregated fromRGB and depth features. These features
help capture the appearance andmotion of the human
body and parts as spatial-temporal characteristics for
activity representation in 2D and 3D. Thus, each ac-
tivity is presented by a set of features instead of one
fixed length vector as in traditional approaches. Fi-
nally, we adopt the MKLmethod in order to combine
multiple features that are extracted from RGB and

depth data in the classification step. We evaluate our
methodology on two challenging public datasets, such
as CAD120 and MSR Daily Activity 3D, with 94.16%
and 95.31% in accuracy, respectively. We have shown
the benefit of a multimodal approach in the address-
ing the challenge of daily activity recognition. The
evaluations of the different parameters and methods
allow us to better understand the nature and problems
of daily activity recognition. The experimental results
in this study are potentially useful in real-life applica-
tions, such as in healthcare, smart home technologies,
and robotics.
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Figure 10: Some frames are sampled fromMSR-Daily Activity 3D dataset.

HOF: Histogram of Optical Flow
HOG: Histogram of Gradient
HOG3D: Histogram of Gradient 3D
HOJ3D: Histograms of 3D Joints
HON4D: Histogram of oriented 4d normals
LDP: Local Depth Pattern
MBH: Motion Boundary Histogram
MEI: Motion Energy Image
MEMM: maximum-entropy Markov model
MHI: Motion History Image
MKL: Multiple Kernel Learning
NBNN: Naïve Bayes Nearest Neighbor
PCA: Principal Component Analysis
RGB: Red Green Blue
RGB-D: Red Green Blue Depth
ROP: random occupancy pattern
SIFT: Scale-Invariant Feature Transform
SNV: Super Normal Vector
STIP: Space Time Interest Points
STOP: Space-time occupancy patterns
SURF: Speeded Up Robust Features

SVM: Support Vector Machine
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