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Calculation of the Orr-Sommerfeld stability
equation for the plane Poiseuille flow

Trinh Anh Ngoc, Tran Vuong Lap Dong

Abstract—The stability of plane Poiseuille flow
depends on eigenvalues and solutions which are
generated by solving Orr-Sommerfeld equation with
input parameters including real wavenumber a and
Reynolds number R. In the reseach of this paper, the
Orr-Sommerfeld equation for the plane Poiseuille
flow was solved numerically by improving the
Chebyshev collocation method so that the solution of
the  Orr-Sommerfeld  equation could be
approximated even and odd polynomial by relying
on results of proposition 3.1 that is proved in detail
in section 2. The results obtained by this method
were more economical than the modified Chebyshev
collocation if the comparison could be done in the
same accuracy, the same collocation points to find
the most unstable eigenvalue. Specifically, the
present method needs 49 nodes and only takes
0.0011s to create eigenvalue
ci?=0.23752648 505 + 0.00373967 557i while
the modified Chebyshev collocation also uses 49
nodes but takes 0.0045s to generate eigenvalue
c‘f’ = 0.23752648 526 + 0.00373967 555i with
the same accuracy to eight digits after the decimal
point in the comparison with
Commer = 0.23752648882 + 0.00373967062i, see
[4], exact to eleven digits after the decimal point.

Keywords—Orr-Sommerfeld equation, Chebyshev

collocation method, plane Poiseuille flow, even
polynomial, odd polynomial

1. INTRODUCTION

I n this paper, we reconsided the problem of the
stability of plane Poiseuille flow by using odd
polynomial and even polynomial to approximate
the solution of the Orr-Sommerfeld equation. This
approach was also described by Orszag [1], J.J.
Dongarra, B. Straughan, D.W. Walker [5] but the
goal of this paper was to describe how to
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implement in the efficient approach by using
Chebyshev collocation method [6]. We obtained
results require considerably less computer time,
computational expense and storage to achieve the
same accuracy, about finding an eigenvalue which
had the largest imaginary part, than were required
by the modified Chebyshev collocation method
[3].

About the plane Poiseuille flow we wished to
study numerically the stream flow of an
incompressible viscous fluid through a chanel and
driven by a pressure gradient in the x - direction.
We used uints of the half-width of the channel and
units of the undisturbed stream velocity at the
centre of the channel to measure all lengths and
velocities. In the Poiseuille case, the undisturbed
primary flow was U(y) =1 — yZonly depended
on the y -coordinate, the side walls were
aty = £+1, the Reynolds number wask = 1/v,
where vwas the kinematic viscosity.

v

y=+I

Fig. 1. The plane Poiseuille flow

We assume a two-dimensional disturbance

having the form

¥ = (y)el=x @

where i was the imaginary unit, awas a real
wavenumber, cwas the complex wave velocity.
The velocity perturbation equations might be
obtained by the linearization of the Navier-Stokes
equations which were reducible to the well-known
Orr-Sommerfeld for the y-dependent function

().
— (¢ = 20797+ a*9) + (1= ¥P)(@ "~ *¢)

+2p =c(¢p —a’e) )
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With boundary conditions
P =¢ (£1)=10 ®)
According to (1), the real part of the temporal
growth rate was effc=c.+ic; therefore if
there existed Im(c) = Othen amplitude of the
disturbance velocity grew exponentially with time.

2. MATERIALS AND METHODS

Proposition 3.1 Suppose that we seek an
approximate eigenfunction of (2)-(3) of the form
o) =ayy¥ +ay_ v+ 4+ ay+a,

then ¢, (v) was an odd function or an even

function; corresponding to
A = {c|¢x(v) was an odd function}

orS = {c|¢,(v) was an even function},
respectively.  Furthermore, if there existed

cg € A NS then the approximate eigenfunction of
(2)-(3) was the sum of odd function and even
function, corresponding to eigenvaluecy.

Proof. Assuming that a solution of (2)-(3) could

be expanded in a polynominal series as follows
+iz
() = Z agy*.
k=0

Then, the second and fourth derivatives of the
function ¢(v) were

¢ () = ZiZo(k + 1) (k + ).y,

¢ () = ZiZa(k + 1) (k + 2)(k + 3)(k + Dag, v~

Hence

% (p® —2a%¢"+a*e) =

+o

> % [ + 1)k +2)(k +3)(k + 4)ap,q
J‘—_zozrz (k+ 1)(k + 2)a,,, + a*a,]y".

+o
¢ —alp= Z[Uf + D)k +2)a,, - a?a ]y~
k=0

(1-y)@ "~ a*$) = ) [(k+1)(k + Daga; -
((k—1Vk+a)a,+ r:rkz_ank_z]y“.

We could substitute these into (2), then the
right-hand side of (2) was

+a0

Z {;—R (k+ 1)k +2)(k +3)(k + Dag., +

k=0

2ia
[(1— )+ 1)(k +2) - = (k + 1)k + 2)] s+

ia? 2 2 K
?—[k—l)k—[1+c')n' +2|a,—a‘ag_,;y

=0.(4)

Usually, it was not practical to attempt to sum
the infinite series in (4), hence we replaced (4) by
the finite sum with k =0,1,...,N — 4 and equate
coefficients of y* fork = 0, ..., N — 4, we got

ﬁ (k+1)(k+2)(k +3)(k + 4)ag,.+

2im

[(1— )k + 1)k +2) =22 (k + D)k +2)| aper +
n
®)

Beside, the boudary condition (3) were also

— (k= Dk—(1+0)a® +2|ay— a’a,_, =0,

replaced by the finite sum as expansions
inag, ..., ay, as follows
YV k=0 ap=0, XY 1o kap=0,
k=0 mod 2 k=0 meod 2
(6)
¥ k=0 ap=0, XYz kap=0.
k=1 mod 2 k=1med2
@)

Obviously, the system (5)-(7) had N+1
equations for N + 1 coefficients, therefore we
could find a non-trivial solution,
dy(V)=ayy¥+--+a, existing only for

certain eigenvaluesc.

But in this proposition, we consider another side
that all of the coefficients in the equation (5) were
coefficients of odd or even power ofy, hence the
system (5)-(7) separated into two sets with no
coupling between coefficients ajfor odd and
evenk. Consequently, there existed a set of
eigenfunctions  with a,=0 for kodd;
corresponding to eigenfunction w(y) was
symmetric, i.e. v(v)=v(—y). Conversely, the
eigenfunctions with a, for keven were
antisymmetric, i.e. v(v) = —v{—y). We defined
two sets A= {c|¢y(y) was an odd function}
ands = {c|¢y(y) wasan even function}. Assume
that, there existed ¢y € A NS andgy(v), dx(V)
are respectively odd and even eigénfunction, the
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corresponding eigen value Co then
Dy (V) = (V) + dy(v) was also eigenfunction
of the quations (2)-(3). The proof was complete.

It immediately followed from proposition 3.1
that the only unstable eigenmode of plane
Poiseuille flow was symmetric. Thus the following
propositions allowed us to approximate
eigenfunctions by odd polynimial and even
polynomial functions. By relying on results of the
Chebyshev method, we defined two basic
functions, associated with Chebyshev-Gauss-
Lobatto  nodesy; = cosj m/N;j=0,..,N, to
interpolate odd and even polynomial polynomials
in[—1;1]
by (1) = [P0 == —[1"r=0

¥—Y¥r N -!I: —_

;.'“ k=¥ rEN-kYN-k"Vr
0,...N,
(®)
N_ PV ; Y-V
eph (V) = o + :; PP
0,...N,
(9)
Where
ey = ey = = ey = 1, if Nwas odd.
€ = ey = = ey = l;ey;; = 2,if N was even.
(10)

Proposition 3.2 Consider basic functions hy (y)
and /1,.(y) which was defined in (8) and (9). Then

(i) Ahx(y) was the odd
he(Yj) =64 —n—ky -

(i) hz(v) was the even
eh (V) = 3 + Sni _

where &;;stood for Kronecker delta symbol.

Proof. (i) Obviously, we could prove that E@)

function and

function and

was odd function easily. Indeed, because R was
the domain of h,(v), therefore ¥x, € E then

—xp € X and
N N
; T %0 —Yr —Xg— Vr
h(—x0)= | | ===~
Llye—ye 1l yy,—vy
rlk rEN-k
N N
_r oW | | —Xo — Vr
—7, N 1 —V. — VW
reg Ww-k Ve 13 Ve W
r+k r+N-k
N N
_r Xg+ Vi | | xn""i"
L Ly oty 1Lyt
r+k rEN— I.

NATURAL SCIENCES, VOL 2, ISSUE 5, 2018

ﬂ
VY- — ¥n-
r:t J.

N

| | Yo = Vn-r
T — Vi
r=5 Ve~ Vn-r

=0

rEN-k
I\r
- | | i_| |M
L0 Y- —¥; =0 Yie —¥;
jEN-k Jjxk
={1;;(x0)
It remained to check

we had

Yi—=¥r
h U’) 1_[ E— Vr
r:t.l.

=0y = Gy-py;-

5('&[_&.)}. FOf a.” 0=< -If:j = N,

l_[ Yi—Vr
t=g Yn-k—Vr

r+N-k

(ii) The same as the proof of (i), we got (ii). The
proof was complete.

The key feature of this method was that if we
assumed that solution ¢(y) of (2)-(3) was even
function then we could approximate ¢ (y) by even
polynomial ¢@(y) with only half nodes, i.e.
y;=cosmwj/N,j=0, .. [N/2] . We got

[V/2]

G = Y. B0,
k=0
where ¢,, =

¢e(v).k=0,...,[N/2] and

_ 1-— _112 _
L) = T3 @)

Conversely, suppose that ¢»(v) was odd function
then it was  approximated by odd
polynomialg  (v), which could be written as

/2]

ox) = ). Bl
k=0

where ¢, =

¢ (v).k=0,..,[N/2] and

1—y?
L= 1_—-92&;.'@)'

Althought, we also needed thatg " (v,), ¢ “)(y),
j=0,..,[N/2] in equation (2) should be
approximated and expressed as expansions in
d(V1) - d(Vpyyzy) SO that we could discrete

equation  (2) completely. The following
proposition would help us to do that.
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Proposition 3.3 The Lagrange polynomials
associated to the Chebyshev-Guass-Lobatto points
were

hy (x) = ﬁ {X";f J; 0<j<N,

r=0,r=]j Xj_ r
wherex; = cos”—j;j =0,..,N. Define
N
dj =109 then
(=0
i = - - i *]J.
Cj(xi_xj)
d T i=12.N-1
g=———,1=12,..,.N—
" 2(1—x?2)
2N2+1
d— = _d = y
00 NN &
where €0 =CN =2,¢;=Cp =...=Cy 3 =1

Proof. Since this theorem was very long, the
reader could see this proof in [6] P.22.
Proposition 3.4 Let

u(y) = 20 uhy(v) (11)

wherey; = cos%;j =0,..,[N/2].

T

ifLI [u(yo) U(y[N/Z])] was the vector
of function values, and
u® = [u® (yg) ... u™ (yy )] was the vector
of approximate nodal k — thorder derivatives,
obtained by this idea, then

(i) If h;(y) = h;(v) then there existed a matrix,
say Pt = (Pij)osijenyz) with e;p;; = ej"r_lj@f) =
di; +dyy_j; and e; which was defined in (10),
such that

u =Py (12)
(ii) If h;(y)="h;(y) then there existed a

matrix, sy Q™Y =(qosijepyyy  With
qi; = hj (%) = di; — dyy_j) , such that
u =QWMuy (13)

(i) If by (v) = f:j@) then we had

w2 = [:Qt'lec'.Lj)nu’u('2n+lj = p(1) (Q('ljp('lj)nu

(iv) If 2;(y) = h; () then we had

u®m = (PLQM) 'y u@n+h) = QW (QWPM) 'y,
Proof. It was straightforward to deduce the
conclusions (i) and (ii) directly from proposition
3.3 and definition of k. (v) in (8), /() in (9).
(iii) Let us prove the following assertion by
using induction with respect ton.

w2 = [:Qt'l:' Pi'l:')nu (14)

Whenn = 1, it was easy to see that
u =QWpWy,

Indeed, since u(y) was even function, u'(y)
should be odd function. Thus u'(y) could be
approximated by the following polynomial in the
interval [—1; 1]

[vV/2]

ORI X))

j=0

Applying the conclusion (ii) for u'(y} and using
(12), we gotu = QWMu = QL piy,

Suppose that the conclusion in (14) was true
forn=k, we found to show that (14) holded
forn=%k+ 1. It follow from the induction
hypothesis thatu2¥) = [:Q”?'P”?')w"u, and since
u¥)(y) was even function, u?**1(y) could be
approximated byu(?¥) () = IV u® (y )k (1),
Therefore, applying the conclusion (i)
foru®¥ (y), we had
w2t = pOy2< — p1 (QpM) gy similarly,
the odd polynomial u**+%)(y) was approximated
by (2k+1) Ey} — ZE.’i,-;Z]ui'z.IHlj (}’j)bj O})’ and jUSt
applying the conclusion (ii) foru@**(y), we
have u?k+2 = Q(1)g2k+1 = [:Qc'ljpc'lj.)i"-'*'l)u We
completed the proof of the conclusion (14).
Finally, ~to  complete  the  proof of

uZk+2 = Qg 2k+l = [:Qc'ljpc'l;.)i'HlJH and (iv).
We just repeated the arguments of the proof of
(14).

Approximating
polynomial

eigenfunction by  even
We found polynomial 2(y) was even function

Which approximate the solution #(y) of form (2)-
(3) such that
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d(;) =dn-;) = ()1 <j < [N/2]
(15)

¢ (£ =$(x1)=0

(16)
iz
yj=cos-—; 0,...,N
where, N . The solution of
(15)-(16) was given by
[N/2]
0= ) el
k=1
) =Y Ry
where ¢, = ¢(v,,) and 1-vk .

Indeed, we have
E_;:_U’k) = L(Oy-1) = L,
Le(v;) = 0,5; # Vg

This implies that the constraint (15) and the

condition boundary ¢ =0 are satisfied.
Further,
- -2y - 1-y? -
k() =L R+ hi(y): k=0,
1-yg 1-yg

this implies that ¢ (y) satisfyg (+1) = 0.

Next, we use the followingg¥)(y), ¢"(y) to
approximate ¢ () andg (), respectively

[V/2] ¢
o B g ® _ 1202
@(4, — Z ((1 _ 3;2)."1‘[: —8yhy, — 129’1;:)1_—}?;
] MK
[N/2] )
o _ 2 =" _ i —op YTk

We can then substitute each of these derivative
into (2) and we get the following relations

— (9 — 202§ +a*§) ) +

(1 _3’.{'2)(‘?:'_“_ “2915)(3’;) + 2‘?5(3’;')

=c(@ —a?P)(y) 1= < [N/2]
= {@4 — 22D, + a*:];—R +

Diag(1 — y2)(D, — a?I) + 21U = ¢(D, — a*N)U

= Ad = cBeP.

where
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D, = (Diag(1 — y7)D* — 8Diag(y;)D?

1
- 2\Di
12D )Dlag(l — 1}3)

<

D, = (Diag(1 — y?)D? — 4Diag(y;)D
\ 1
—21I)Diag (1—y§)'

Matrices Iy, I, I, Were defined, respectively,
by matriceS(Q('le('lj)Z, P('lel:'l]P('l], Q('le('lj
which were deleted its first column and first row,
where matrices Q) Pt} were determined from the
proposition 3.4.

The notation Diag(1—y7) was a diagonal
matrix with elements 1 —y?, j=12,...,[N/2]
along its diagonal.

The notation Diag{y) was a diagonal matrix
with elements y;j=12,...,[N/2], along its
diagonal.

The notation Diag( :

—y2
1 ¥;

) was a diagonal

matrix with elements y;j =1,2,...,[N/2] along
its diagonal.

Iwas the [N/2]x[N /2] identity matrix.
¢ =[¢; ¢ ‘{t'[.\',fZ]]T-

— i
A=[D; — 22D, + a*l]— +

. aR
Diag(1 — y7)(D, — a*I) + 2I.

B=D, —a’l.

Approximating odd
polynomial

In this case, we find the polynomial ¢(y;) was
odd function which approximate the solution of
(2)-(3), such that

‘é’@"}) = _‘f’@.\'—j) =@y 1 =j=[N/2]
(7

¢ (£1) = ¢(+1)= 0(18)

eigenfunction by

wherey; = Cos%;j =0,1,...,N. The solution
of (17)-(18) was given by

wyz]
P(y) = Z

k=1

where ¢, = $(y) and L (y) =

b 1 (¥).

—y?

1
=)
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The 4 order and 2" order derivative of ¢(v)
were then calculated as follows

[N/2] s

#9 =3 (a-yn? -eyh® —12n()Ho,

- k=1 1-yg

, [N/2] , ,

§ =Y (@ yAm —ayn -2n )P
=i 1-yg

We could then substitute each of these

derivative into (2) and we got the following
relations

(@ - 2079+ a*) () +
(1—y})(p —a?e) )+ 20 ()
=c(¢p —a’@)y )l <j=<[N/2]

Iwas the unit matrix that its size was

[N/2]x[N/2] ifNodd and
([N/2] —1)x([N/2] — 1) if N was even.

¢ = [, G/zy]” ifNwas odd and
& = [¢, Powjz-1]" i N was even.

i
A= —2a’D —
[D, —2a°D; + ]afR+
Diag(1—y7)(D, — a®I) + 2I.
B =D, —a?l.

3. RESULTS AND DISCUSSION

In this section, these numerical results were
executed on a personal computer, Dell Inspiron
N5010 Core i3, CPU 2.40 GHz (4CPUs) RAM
4096MB and we denoted that ci was the

Diag(1 — y7 ) (D, — a®I) + 21}U = ¢(ID, — e’ Ndjgenvalue that had the largest imaginary part of

i
= {[@4—2a2@2+a41]ﬁ+
= Ad = B¢,
where

D, = (Diag(l— yJZ)JID4 —8DiaQ(Yj)D3

1212 ) Diag
1- yJ2

D, = (Diag(1 — y?)D? — 4Diag(y;)D
—ZI)Diag( ! ) .

l—_vj:

Matrices Iy, D5, I, were defined, respectively,
by matrices (PIQ(NH2, QW ptligh),
P oMwhich were deleted its first column and
first row if N was odd and remove more last
column and last row, where matrices P @ were
determined from the proposition 3.4.

The notation Diag(1—y7) was a diagonal
matrix with elements 1—y?, j=1,...,[N/2]
ifNwas odd and j=1,...,[N/2] -1 if N was
even.

The notation Diag(y;) was a diagonal matrix
with elements vy, j=1,...,[N/2] if Nwas odd
andj=1,...,[N/2] — 1if N was even.

1

1—y7
=]
with elementsy,, j = 1,..., [N /2] ifN was odd and

j=1,...,[N/2] —1if N was even.

The notation Diag( )was a diagonal matrix

all eigenvalues computed using the modified
Chebyshev collocation method [3]. The modified
Chebyshev collocation method was the Chebyshev
collocation method which was modified by L.N so
that its numerical condition was smaller than the
orginal method. Trefethen so that its condition
number was smaller than the original method, or
the present method with N +1 nodes.
ForR = 10000, a=1, N =49, we saw from
Fig.2 that Im(e$®)=0.0037396755i, where
cf‘9= 0.23752648505 + 0.003739675571 by
using the present method. This value was eight
digits when it was compared with the exact
eigenvalue

Coxart = 0.23752648882 + 0.00373967062i [4].
Fig. 2 showed the distribution of the eigenvalues.

R=10000, v = 1, N = 49, Im(ec{") =0.00373067558
0 =
P

®
s B e

PR
E =

=

-02

B

02 0.4 0.6 0.8 1

C,

Fig. 2. The spectrum for plane Poiseuille flow when
o« = 1, = 10000. Open circle (0) = even eigenfunction, cross (x)
= odd eigenfunction. The upper right branch and the lower left
branch consist of "degenerate" pairs of even and
odd eigenvalues



128

Next, we compared the accuracy of Im( ci') and
excution time between the present method and the
Chebyshev collocation method, for
R = 10000,x = 1. Table 1 and Fig. 3 a) showed
that although the accuracy of Im(ci") in both
methods was almost the same but we also saw
from Table 1 and Fig. 3 B) that the excution time
of the present method took less time than the other
method with the same nodes. We could explain

SCIENCE & TECHNOLOGY DEVELOPMENT JOURNAL:
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this difference by recalling the discussion in Sec.
Approximating eigenfunction by even polynomial
and odd polynomial with if the same collocation
points, then the size of matrices generated by the
present method would only be half of the size of
matrices generated by the other method, therefore
it required considerably less computing time and
storage.

Table 1. The eigenvalue ¢ and executing time generated by the present method and the modified Chebyshev collocation

The modified C.C method [3] The present method
v Time | log, N Time log,g
t (S) |Ci'r_'5'1‘a:t| : (S) |Ci'r_'5'1‘a:t|
19 0.2 4233807106+0.0037 6565115i 0.0008 -2.3177 0.2 4156795715+0.003 98342010i 0.0003 -2.3926
24 0.23 842691002+0.003 02873472i 0.0010 -2.9403 0.23 843457669+0.003 01837942i 0.0004 -2.9356
29 0.237 66119611+0.003 60717941i 0.0014 -3.7236 0.237 66838150+0.003 61250703i 0.0005 -3.7200
34 0.2375 4548113+0.0037 2975124 0.0020 -4.6690 0.2375 4611080+0.0037 2953814i 0.0007 -4.6559
39 0.23752 846688+0.003739 83066i 0.0026 -5.7023 0.23752 847431+0.003739 87797i 0.0008 -5.6997
44 0.237526 55005+0.003739 77835i 0.0032 -6.9068 0.237526 55270+0.003739 78084i 0.0010 -6.8948
49 0.23752648 526+0.00373967 555i 0.0045 -8.2161 0.23752648 505+0.00373967 557i 0.0011 -8.2058
(Camee = 0.23752648882 + 0.003739670621, see [4], exact to eleven digits after the decimal point)
. <1073 R=10000, o = 1, N = 49
R=10000, « = 1, N = 49 5r
Ar
45 .
ot Medified Chebyshev collocation method Ir'r
47 i
a3 36T o !
— Present method -
g: -4 3 Modified Chebyshev collocation method ———m — /
Q A -
o 5 Eos . -
s |
E, & 2 . -~
15 —
-Tr L
1 e
At - /
05 Present method
-9 L L L L 4
10 15 20 25 30 35 40 45 50 D15 20 25 ) 35 40 45 50

N

Fig.3. A) log

M
10 1€¥ — e |as a function of¥; B) the computer time to achieve ¢ as a function of i for Orr-Sommerfeld

problem (2)-(3). The red solid line belonged to the present method and the blue dash line belonged to the modified Chebyshev
collocation method

Fig. 3 showed obviously that the results
obtained using both methods were very close, but
the present method take less time than the orther
method.

4. CONCLUSION

The present method, based on a combination of
the Chebyshev collocation and the results of
proposition 3.1, allowed us to solve the equations
(2)-(3) by approximating the solution of this
quations by even and odd polynomials, so it was

different from the modified Chebyshev collocation
[3]. The numerical results showed that calulating
the most unstable by the present method was more
economical than the modified Chebyshev
collocation about computer time and storage when
the comparison could be done for the same
accuracy, the same collocation points.
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Tinh toan phuong trinh Orr-Sommerfeld cho
dong Poiseuille phang
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Tém tit—Sw 6n dinh cia dong Poiseuille
phing phu thudc vio cac gia tri riéng va ham
riéng ma dwoc tao ra bing viéc giai phwong
trinh Orr-Sommerfeld véi cac tham s dau vao,
bao gdm sb séng « va s6 Reynold R. Trong
nghiém ciru cia bai bao nay, phuwong trinh Orr-
Sommerfeld cho dong Poiseuille phing c¢é thé dwoc
giai s6 bing viéc cai tién phwong phap Chebyshev
collocation sao cho cé thé xip xi dwoc nghiém cia
phwong trinh Orr-Sommerfeld bing cic da thirc ndi
suy chin va 1é dua trén cic két qua ciia ménh dé 3.1
ma da dwoe ching minh mdt cach chi tiét trong
phén 2. Nhitng két qua sé dat dugc bing phuong
phap nay tiét kiém hon vé thoi gian va lvu trir so véi
phuwong phap Chebyshev collocation khi cho ra

tri riéng bat 6n dinh nhit véi cang d9 chinh xic.
Cu thé, phwong phap hién tai cin 49 diém nit va
mét 0.0011s aé tao ra tri riéng
cfg =0.23752648505+0.00373967557i khi

phuwong phap Chebyshev collocation hi¢u chinh ciing
str dung 49 diém nat nhung cin 0.0045s dé tao ra tri

rieng ¢ =0.23752648526+0.00373967555i véi ciing
dd chinh x4c la 8 chir s6 thap phan sau d4u phay khi
sanh  véic®  =0.23752648882+0.00373967062i

exact
xem [4], chinh xic t6i 11 chir s6 thiap phan sau diu
phz‘iy.

Tir  khéoa—phwong trinh  Orr-Sommerfeld,
phuwong phap Chebyshev collocation, dong Poiseuille
phéing, da thirc chiin, da thirc 16

trong

So
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