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Abstract

The a priori procedure (APP) was designed as a pre-data

procedure whereby researchers could find the sample sizes

necessary to ensure that sample statistics to be obtained

are within particular ranges of corresponding population

parameters with known probabilities. Although the APP

has been devised for a variety of experimental paradigms,

these have all been simple. The present work extends

a priori thinking to an important case not addressed

previously, where the researcher is interested in one-way

ANOVA models with skew normal random effects.

Computer simulations support the equations presented,

along with a real data example for illustration of our main

results.
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1 INTRODUCTION

The a priori procedure (APP) pro-
vides an alternative to null hypothesis
significance testing or traditional con-
fidence intervals. Whereas these lat-
ter procedures are post-data, the APP
is pre-data. To use the APP, the re-
searcher commits to two specifications:
there is the desired distance within
which the statistics of interest are to
be within the corresponding population
parameters being estimated, the preci-
sion specification; and there is the de-
sired probability of meeting the preci-
sion specification, the confidence spec-
ification. Once a researcher has com-
mitted to precision and confidence spec-
ifications, appropriate APP equations
provide the sample sizes needed to meet
those specifications. Trafimow (2017)
[8] provided an APP equation for the
case of a single mean and Trafimow et
al. (2020) [10] provided APP equations
pertaining to differences in means for
matched or independent samples.

Although the foregoing APP equa-
tions assume normality, the assumption
is not necessary. Trafimow et al. (2019)
[9] expanded to skew-normal distribu-
tions, where the mean µ and standard
deviation σ that are parameters of nor-
mal distributions are replaced with lo-
cation ξ and the scale ω, respectively.
Skew-normal distributions also have a
shape parameter α. If α = 0, then the
distribution is normal, and ξ = µ and
ω = σ. However, if α 6= 0, then the
distribution is skew-normal. Wang et
al. (in press) [13] expanded the APP to
account for differences in locations un-
der skew-normal settings, with matched

samples; and Wang et al. (2019) [14]
expanded the APP to account for dif-
ferences in locations under skew-normal
settings, with independent samples. Fi-
nally, Wang et al. (2019) [12] provided
equations to aid researchers in obtaining
appropriate sample sizes to ensure that
estimates of shape parameters meet pre-
cision and confidence specifications.

But researchers often have multi-
ple samples, and the populations from
whence these samples derive may be
skew-normal, as opposed to normal.
Furthermore, the multiple samples may
be under the rubric of random effects
contexts rather than fixed effects con-
texts. Thus far, there is no APP work
with respect to random effects mod-
els pertaining to multiple groups, under
skew-normal settings. The present goal
is address the lack.

It is well known that many data
sets collected from financial, biomedical
fields, etc. have skewed distributions.
This is a reason why the classical nor-
mal distribution is not so adequate to
model the data from these areas even
though it is popular and easy to han-
dle. For data that do not follow nor-
mal distributions, it is natural to con-
sider the family of skew normal distribu-
tions, which is the family of normal dis-
tributions. The family of skew normal
distributions, which is enable to model
skewed observations or measurements,
was introduced for univariate and mul-
tivariate cases (see Azzalini (1985) [1].
Since then the family of skew normal
distributions has been studied by many
researchers, see, e.g., Gupta and Chang
(2003) [6], Gupta et al. (2004) [7], Ver-
nic (2006) [11], Azzalini and Capitanio
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(1999) [2], Wang et al.(2009) [15], Ye et
al.(2014) [16], and Ye and Wang (2015)
[17]. Its multivariate form, by Azzalini
and Dalla Valle (1996) [3], is used as a
generalization of the multivariate nor-
mal distribution. Readers are referred
to the monographs by Genton (2004) [5]
and Azzalini (2013) [4] for a comprehen-
sive introduction for theoretical devel-
opment and applications of skew normal
distributions.

This paper is organized as follows.
In Section 2, a brief introduction and
some useful properties of the multivari-
ate skew are discussed. In Section 3,
one-way ANOVA model with with skew
normal random effects is given and the
related distributions of quadratic forms
of the model are obtained. The APP
approach for estimating variance, σ2

τ , of
random effects or testing the hypothesis
if σ2

τ = 0 is derived in Section 4. Simula-
tion studies and a real data applications
are given in Section 5 for illustration of
our main results.

2 PRELIMINARIES

In this section, we will introduce
necessary notations to be used in this
paper and list properties of the multi-
variate skew normal family of distribu-
tions.

Let Mn×m be the set of all n × m
matrices over < so that Mn×1 = <n.
For any nonnegative definite matrix T ∈
Mn×n, let T ′, T−, T+, and trT be
the transpose, generalized inverse, the
Moore-Penrose inverse, and trace of T ,
respectively, and let T−

1
2 and T

1
2 be

symmetric such that T−
1
2T−

1
2 = T+ and

T
1
2T

1
2 = T . Also, In ∈ Mn×n is the

identity matrix, 1n ∈ <n is the vector
with entries of 1’s, and Jn = 1n1

′
n ∈

Mn×n is the square matrix with 1 in
all entries. Also for B ∈ Mm×n and
C ∈ Mp×q, we use B ⊗ C to denote the
Kronecker product of B and C.

Definition 2.1. (Azzalini and Dalla
Valle (1996) [3]) A random vector X
is said to have an n-dimensional mul-
tivariate skew normal distribution with
vector of location parameters µ =
(µ1, µ2, ..., µn)′ ∈ <n, scale parameter
of nonnegative definite Σ ∈ Mn×n, and
the vector of skewness (shape) parame-
ters α = (α1, α2, ..., αn)′ ∈ <n, denoted
as X ∼ SNn(µ, Σ, α), if its density
function (pdf) is

fX(x) = 2φn(x;µ,Σ)Φ
(
α′Σ−1/2(x− µ)

)
,

(2.1)

where φn(x;µ,Σ) is the density of the
n-dimensional multivariate normal dis-
tribution Nn(µ, Σ) with mean µ and
covariance matrix Σ, and Φ(z) is the
cumulative distribution function (cdf)
of the standard normal random variable
Z ∼ N(0, 1).

For the proof of our results, the fol-
lowing lemma is needed.

Lemma 2.1. (Wang et al.(2009) [15]) If
X ∼ SNn(µ, Σ, α), then the moment
generating function X is given by

MX(t) = 2 exp

(
t′µ+

1

2
t′Σt

)
Φ
(
δ′Σ

1
2 t
)
,

(2.2)

where exp(x) = ex and δ =
α/
√

1 +α′α.

Theorem 2.1. Suppose that X ∼
SNn(µ, Σ, α). Then for any ma-
trix A ∈ Mn×k with full column rank,
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A′X ∼ SNk(A
′µ, Σ∗, α∗), where

α∗ =
Σ
− 1

2
∗ A′Σ

1
2α√

1 +α′(In − P )α
,

Σ∗ = A′ΣA,

and P = Σ
1
2AΣ−1

∗ A
′Σ

1
2 .

Proof. Let Y = A′X, from (2.1), we
have

MY (t) = E(exp[(At)′X])

= 2 exp

{
t′A′µ+

1

2
t′A′ΣAt

}
×

× Φ(δ′Σ
1
2At)

= 2 exp

{
t′A′µ+

1

2
t′A′ΣAt

}
×

× Φ(δ′Σ
1
2A(A′ΣA)−

1
2 (A′ΣA)

1
2 t)

= 2 exp

{
t′A′µ+

1

2
t′Σ∗t

}
×

× Φ(δ′∗Σ
1
2
∗ t),

where δ∗ = Σ
− 1

2
∗ A′Σ

1
2δ. Note that

δ
′

∗δ∗ =
α′Pα

1 +α′α
and P = Σ

1
2AΣ+

∗ A
′Σ

1
2 .

By Lemma 2.1, we obtain that Y ∼
SNk(A

′µ,Σ∗,α∗) with

α∗ =
δ∗√

1− δ′∗δ∗
=

(A′ΣA)−
1
2A′Σ

1
2α√

1 +α′(In − P )α
.

Therefore the desired result follows.

The following result is a special case
of Theorem 2.1 where A ∈Mn×n is non-
singular.

Corollary 2.1. Let X ∼ SNn(µ, In, α),
and A ∈ Mn×n be nonsingular. Then
A′X ∼ SNn(A′µ, A′A, (A′A)−

1
2A′α).

If, in particular, A is orthogonal, then
A′X ∼ SNn(A′µ, In, A

′α).

Also if we let A = 1
n
1n and A = ei

where ei ∈ <n denotes the vector with
a 1 in the ith coordinate and 0’s else-
where, respectively, then it is easy to
obtain the following result.

Corollary 2.2. Suppose that X =
(X1, X2, ..., Xn)′ ∼ SNn(µ, Σ, α) with
µ = ξ1n, Σ = ω2In and α = λ1n, where
ξ, λ ∈ < and ω > 0. Then the following
results hold.

(a) The sample mean X̄ =
1
n

∑n
i=1Xi has a skew normal distri-

bution:

X̄ ∼ SN

(
ξ,

ω2

n
,
√
nλ

)
,

(b) Random variables X1, · · · , Xn

are identically skew normally dis-
tributed:

Xi ∼ SN
(
ξ, ω2, λ∗

)
i = 1, . . . , n,

where λ∗ = λ√
1+(n−1)λ2

.

(c) The mean and variance of Xi are
given by

E(Xi) = ξ + ω

√
2

π
δ∗,

V (Xi) = ω2(1− 2

π
δ2
∗),

respectively, where δ∗ = λ√
1+nλ2

.

Definition 2.2. Let Z ∼ SN(0, 1, α),
U ∼ χ2

k, the chi-square distribution with
k degrees of freedom, and Z and U be
independent. Then the random vari-
able T = Z√

U/k
is said to have a skew

t-distribution with skewness parameter
α and degrees of freedom k, denoted as
X ∼ Stk(α).
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From Definition 2.2, it is easy to see
that the pdf of T (see Azzalini et al.
(2003) [4]) is

fT (t) = 2t(t; v)×
×
�∞

0
e−uu(v−1)/2Φ

(
αt
√

2u√
t2+v

)
du.

(2.3)

In order to obtain the minimum
sample size needed under the given
precision and confidence, the following
lemma of Wang et al. (2016) [18] is
needed.

Lemma 2.2. Suppose that X =
(X1, X2, ..., Xn)′ ∼ SNn(µ, Σ, α) with
µ = ξ1n, Σ = ω2In and α = λ1n. Then

(a) X̄ and S2 are independent,
where S2 = 1

n−1

∑n
i=1(Xi − X̄)2, and

(b) Let T =
√
n(X̄−ξ)
S

. Then T ∼
Stn−1(

√
nλ).

3 INFERENCES ON PARAMETERS
IN THE RANDOM EFFECTS
MODEL

In statistics a random effects model
is a statistical model where the model
parameters are random variables. In
econometrics, random effects models are
used in panel analysis of hierarchical or
panel data when one assumes no fixed
effects (it allows for individual effects).
The random effects model is a special
case of the mixed effects model. Specif-
ically, a random effects model looks very
similar to the fixed effects model of the
form:

Yij = µ+τi+εij , i = 1, · · · , k, j = 1, · · · , ni,
(3.1)

where k is the number of treatment
groups, Yij is the jth observed value for

the ith treatment group, ni is the num-
ber of observations in the ith treatment
group, µ is the grand mean. Here ran-
dom effects are τi’s, are assumed to be
skew normally distributed and εij’s are
normally distributed. We can rewrite
(3.1) in mixed linear model of the form:

Y = µ+ Zτ + E , (3.2)

where n =
∑k

i=1 ni, Y is an n×1 column
random vector of Yij’s, µ is the n × 1
fixed effects vector, Z is the n×k design
matrix, τ = (τ1, · · · , τk)′ is a k×1 vector
of random effects, and E is an n×1 vec-
tor of random errors εij’s. Assumptions
for both models (3.1) and (3.2) are:

(i) the vector of random effects τ ∼
SNk (0, σ2

τIk,α),
(ii) the vector of random errors E ∼

Nn(0, σ2In), and
(iii) τ and E are independent,

where SNm(ν,Σ,α) denotes m-
dimensional multivariate skew-normal
distribution, with location parameter ν,
positive definite scale parameter Σ, and
skewness parameter α, Nm(ν,Σ) de-
notes m-dimensional multivariate nor-
mal distribution, with mean vector ν
and covariance matrix Σ. When σ2 = 0,
α = 0, and µ = Xβ, this model is re-
spectively reduced to the skew-normal
regression model and usual normal lin-
ear mixed model. Note that the model
(3.2) includes many important statisti-
cal models, such as the one-way clas-
sification model, two-way classification
model, and one-way error component
regression model, etc.

Proposition 3.1. Suppose that the model
Y is given in (3.2). Then we have the
following results.
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(i) The MGF of Y is

MY(t) =

2 exp

(
t′µ+

t′ΣYt

2

)
Φ

{
στα

′Z ′t√
1 +α′α

}
,

t ∈ <n,

where ΣY = σ2In + σ2
τZZ

′.
(ii) The distribution of Y is n-

dimensional skew normal, that is, Y ∼
SNn(µ, ΣY, α∗), where

α∗ =
δ∗√

1− δ′∗δ∗
and δ∗ =

στΣ
−1/2
Y Zα√

1 +α′α
.

(iii) The mean vector and covari-
ance matrix of Y are

E(Y) = µ+

√
2

π
Σ

1/2
Y δ∗,

Cov(Y) = Σ
1/2
Y

(
In −

2

π
δ∗δ

′
∗

)
Σ

1/2
Y .

The proof of above proposition is
similar to that given in Ye et al.(2015)
[17]

For the inferences on σ2
τ , we need

the distribution of the quadratic form
of Y, which is related to the F distri-
bution. Thus the following definition of
the noncentral skew chi-square distribu-
tion is needed.

Definition 3.1. Let X ∼ SNm(ν, Im,α).
The distribution of U ′U is defined as
the noncentral skew chi-square distri-
bution with degrees of freedom m, the
noncentrality parameter λ = ν ′ν, and
the skewness parameters δ1 = ν ′α and
δ2 = α′α, denoted by U ≡ X′X ∼
Sχ2

m(λ, δ1, δ2). Furthermore, assume
that V ∼ χ2

m0
, the chi-square distribu-

tion with m0 degrees of freedom, and

U and V are independent. Then The
distribution of F = (U/m)/(V/m0) is
called the noncentral skew F distribu-
tion with degrees of freedom m and m0,
the noncentral parameter λ, and the
skewness parameters δ1 and δ2, denoted
by F ∼ SFm,m0(λ, δ1, δ2).

The properties of Sχ2
m(λ, δ1, δ2) and

F ∼ SFm,m0(λ, δ1, δ2), such as MGFs,
densities, was discussed in Ye et al.
(2015) [17]. Here we need the follow-
ing results of Wang et al. (2014) [16]
to prove our main result on our random
effects model Y.

Lemma 3.1. Let Z0 ∼ SNk(0, Ik,α),
Y0 = µ + B′Z0, Q0 = Y′0AY0, where
µ ∈ <n, B ∈ Mk×n with full column
rank, and A is nonnegative definite in
Mn×n with rank r. Then the necessary
and sufficient conditions under which
Q0 ∼ Sχ2

m(λ, δ1, δ2), for some δ1 ∈ <
including δ1 = 0, are

(a) BAB′ is idempotent of rank r,
(b) λ = µ′Aµ,
(c) δ1 = α′BAµ/d, and
(d) δ2 = α′P1P

′
1α/d

2,

where d = [1 +α′P2P
′
2α]1/2, and P =

(P1, P2) is an orthogonal matrix in
Mn×n such that

BAB′ = P

(
Ir 0
0 0

)
P ′ = P1P

′
1.

For the independence of linear forms
of Y, we have the following result.

Proposition 3.2. Suppose that the model
Y is given in (3.2). For any Bi ∈
Mki×n, i = 1, 2, then B1Y and B2Y are
independent if and only if

(i) B1ΣYB
′
2 = 0 and

(ii) either B1Σ
1/2
Y α∗ = 0 or

B2Σ
1/2
Y α∗ = 0
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Proof. Let Y = µ + Σ
1/2
Y Y∗ with

Y∗ ∼ SNn(0, In, α∗). Then

BiY = Biµ+BiΣ
1/2
Y Y∗ i = 1, 2.

By Theorem 2.2 of Wang et al. (2009)
[15], the desired result follows.

Our APP approach is finding the
minimum of n1, . . . , nk for given both
precision f and confidence level c =
1 − α. Let m = min{n1, . . . , nk}
and Fk,n−k(α) be the critical point
of F distribution with numerator de-
grees of freedom k and denominator
degrees of freedom n − k such that
P (F > Fk,n−k(α)) = α. Note that
Fk,n−k(α) < Fk,k(m−1)(α) for n = n1 +
· · ·+ nk. We have

α = P
(
F > Fk,k(m−1)(α)

)
≥ P (F > Fk,n−k(α)) ,

which is equivalent to

c= 1− α = P
(
F ≤ Fk,k(m−1)(α)

)
≤ P (F ≤ Fk,n−k(α)) .

(3.3)
Therefore, without loss of generality,
our APP is applied to finding the mini-
mum m based on (3.3) so that we need
only to consider the balanced random
effects model. Specifically, for a given
precision level f and a confidence level
c, the required treatment group size m
can be obtained and the details will be
given in next section.

Now let us consider the balanced
random effects model Y given in (3.1)
and (3.2), where n1 = · · · = nk = m so
that n = km. Let

Ȳ·· =
1
n

∑k
i=1

∑m
j=1 Yij = 1

n
1n
′Y,

Ȳi· =
1
m

∑m
j=1 Yij = (Ik ⊗ 1m)′Y,

i = 1, . . . , k.
(3.4)

For analysis of variance, the decom-
position of total sum of squares, SST ,
holds, similarly to the one-way fixed ef-
fects model, SST = SSB + SSE, that
is

SST =
k∑
i=1

m∑
j=1

(Yij − Ȳ··)2

= m

k∑
i=1

(Ȳi· − Ȳ··)2 +
k∑
i=1

m∑
j=1

(Yij − Ȳi·)2

= SSB + SSE,

where SSB is the sum of squares due
to random effects, and SSE is the sum
of squares due to random errors. Note
that above decomposition can be writ-
ten in quadratic forms of Y:

SST = Y′(In − J̄n)Y,
SSB = Y′

(
Ik ⊗ J̄m − J̄n

)
Y,

SSE = Y′
(
In − Ik ⊗ J̄m

)
Y,

(3.5)

where J̄m = Jm/m. The we have the
following main result.

Theorem 3.1. Consider the one-way
balanced model with skew normal ran-
dom effects given in (3.2). Then

(i) E(SSB) = (k − 1)σ2
∗, where

σ2
∗ = (σ2 +mσ2

τ );
(ii) E(SSE) = (n− k)σ2;
(iii) SSB/σ2

∗ ∼ χ2
k−1;

(iv) SSE/σ2 ∼ χ2
n−k; and

(v) SSB and SSE are independent.

Proof. We will only prove parts (i), (iii),
and (v) and parts (ii) and (iv) can be
obtained similarly. Note that for any
random vector X ∈ <n with mean vec-
tor µX and and covariance matrix ΣX ,

E(X′AX) = µ′XAµX + tr(AΣX),
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where A ∈ Mn×n is symmetric. From
Proposition 3.1, we have

Cov(Y) = Σ
1/2
Y

(
In −

2

π
δ∗δ

′
∗

)
Σ

1/2
Y ,

and

ΣY = σ2In + σ2
τ (Ik ⊗ Jm)

= Ik ⊗ (σ2Im + σ2
τJm),

µY = 1nµ+

√
2

π
Σ

1/2
Y δ∗.

For (i), we have A = Ik ⊗ J̄m − J̄n =
(Ik − J̄k)⊗ J̄m. Then

E(Y′AY) = tr[ACov(Y)]

+µ′Aµ+ 2

√
2

π
δ′∗Σ

1/2
Y Aµ

+
2

π
δ′∗Σ

1/2
Y AΣ1/2δ∗.

It is easy to obtain that Aµ = 0 and so
that

E(Y′AY) = tr[ACov(Y)]

= tr

[
AΣY −

2

π
AΣ

1/2
Y δ∗δ

′
∗Σ

1/2
Y

]
+

2

π
δ′∗Σ

1/2
Y AΣ1/2δ∗.

Note that

tr

[
2

π
AΣ

1/2
Y δ∗δ

′
∗Σ

1/2
Y

]

=
2

π
δ′∗Σ

1/2
Y AΣ1/2δ∗.

Therefore

E(Y′AY) = tr (AΣY ) =

tr
[
(Ik − J̄k)⊗ J̄m)(σ2In + σ2

τ (Ik ⊗ Jm))
]

= σ2 +mσ2
τ

so that (i) holds. By the MGF of Y in
Proposition 3.1,

Σ
1/2
Y δ∗ =

στZα√
1 +α′α

.

Note also that Z = Ik ⊗ 1m. Then

Z ′AZ = Ik ⊗
[
1′m(Im − J̄m)1m

]
= 0.

For (iii), note that 1
σ∗

Y = 1
σ∗
µ +

1
σ∗

Σ
1/2
Y Y∗ with Y∗ ∼ (0, In, α∗). By

Lemma 3.1, we need check all if con-
ditions (a)-(d) are satisfied with B =
1
σ∗

Σ
1/2
Y . Since

(BAB′)2 =
1

σ4
∗
Σ

1/2
Y AΣYAΣ

1/2
Y ,

BAB′ =
1

σ2
∗
Σ

1/2
Y AΣ

1/2
Y ,

and it is easy to see that

AΣYA =

Ik⊗
[
(Im − J̄m)(σ2Im + σ2

τJm)(Im − J̄m)
]

= σ2
∗A,

and the rank of A is k − 1 so that the
condition (a) in Lemma 3.1 holds. Also
since A1n = 0, we obtain that λ = 0
and δ2 = 0 so that conditions (b) and
(c) of Lemma 3.1 hold.
Note that if δ1 = 0, the noncentral
skew χ2

r(λ, δ1, δ2) is reduced to reduced
to χ2

r(λ), the noncentral chi2r(λ), which
is free of δ2. Also chi2r(0) = χ2

r. There-
fore by Lemma 3.1,

SSB

σ2
∗

=
1

σ∗
Y′A

1

σ∗
Y′ = SSB/σ2

∗ ∼ χ2
k−1.

For (v), let B1 = Ik ⊗ J̄m − J̄n =
(Ik − J̄k) ⊗ J̄m and B2 = In − Ik ⊗
J̄m = Ik ⊗ (Im− J̄m), then both B1 and
B2 are idempotent of rank k − 1 and
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k(m − 1), respectively. To show that
SSB and SSE are independent, it suf-
fices to show that B1Y and B2Y are in-
dependent. Now we only need to show
that conditions (i) and (ii) of Proposi-
tion 3.2 are satisfied. Specifically,

B1ΣYB
′
2 =

[
(Ik − J̄k)⊗ J̄m

]
×

×
[
Ik ⊗ (σ2Im + σ2

τJm)
]
×

×
[
Ik ⊗ (Im − J̄m)

]
= 0

and B1Σ
1/2
Y α∗ = 0 as B1Z = 0. Thus

by Proposition 3.2, B1Y and B2Y are
independent and condition (v) follows.

4 THE A PRIORI PROCEDURE
FOR TESTING σ2

τ FOR KNOWN
SKEWNESS PARAMETER α

In the random effects model, we use
F -distribution to construct the a priori
procedure respect to the testing hypoth-
esis:

H0 : σ2
τ = 0 vs H1 : σ2

τ > 0.

Hypothesis of this form is especially im-
portant in research on longitudinal data
and panel data since the model (3.1) is
reduced to an usual linear model under
H0. The main result is given below.

Theorem 4.1. Suppose that the model Y
is given in (3.2). Let c be the confidence
level and f be the precision which satis-
fies

P (SSB ≤ fSSE) = c, (4.1)

where SSB and SSE are given in (3.5).
Then the necessary sample size m for
known k can be obtained by

� U

0

g
V

(v)dv = c (4.2)

such that the length of the interval
(0, U) is minimum, where g

V
is the pdf

of V with V ∼ Fk−1, n−k and n = km.

Proof. From Theorem 3.1, we obtain
that SSB/σ2

∗ ∼ χ2
k−1 and SSE/σ2 ∼

χ2
n−k. By the independence of SSB and
SSE, we obtain

SSB/(σ2
∗(k − 1))

SSE/(σ2(n− k))
≡ V ∼ Fk−1,m(k−1),

where Fk−1, k(m−1) is F -distribution
with degrees of freedom k−1 and n−k.
Note that under H0, σ2

∗ = σ2 so that
(4.1) is equivalent to

P

[
SSB/(k − 1)

SSE/(n− k)
≤ f

n− k
k − 1

]

= P

(
V ≤ f

n− k
k − 1

)
= c.

so that (4.1) can be rewritten as (4.2),
where U = f n−k

k−1
. Thus the necessary

treatment group size m can be obtained
by solving for the bound of (4.2).

From Theorem 4.1, we can obtain
the following result immediately.

Corollary 4.1. If the conditions in The-
orem 4.1 hold, then the c× 100% confi-
dence interval for σ2

τ , bounded by U∗, is
given by (0, U∗), where

U∗ =
(U/Fn−k,k−1 − 1)SSE

m(n− k)
.

Also an unbiased estimator of σ2
τ , is

given by

σ̂2
τ =

{
0 if SSB/(k − 1) < SSE/(n− k)
1
m

(
SSB
k−1
− SSE

n−k

)
otherwise.
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5 SIMULATIONS AND APPLICA-
TIONS

In this section, we obtain necessary
treatment group size m with known k
for given precision f and confidence
c. Table ??) provides, using (4.2),
the required treatment group size m
for k = 3, 4, 5, 10 for given confi-

dence c = 0.9, 0.95, and precision f =
0.2, 0.3, ..., 0.7. From Table 1, we con-
clude that (a) the required m increases
as the confidence level changes from
90% to 95%; (b) as precision becomes
less stringent, the sample size necessary
to meet the criterion decreases; and (c)
the required m decreases as the number
of random τi’s increases.

Table 1: Required treatment group sizes mk for k = 3, 4, 5, 10 with given
confidence c = 0.9, 0.95, and precision f = 0.2, 0.3, ..., 0.7.

f c m3 m4 m5 m10

0.2
0.95 76 67 61 48
0.9 49 53 50 42

0.3
0.95 35 30 28 22
0.9 27 24 23 22

0.4
0.95 20 18 16 13
0.9 16 14 13 11

0.5
0.95 14 12 11 9
0.9 11 10 9 7

0.6
0.95 10 9 8 6
0.9 8 7 7 6

0.7
0.95 8 7 6 5
0.9 6 6 5 4

Computer simulations are per-
formed to support the derivation in
Section 4. Without loss of generality,
we assume, that the skewness parame-
ter α is known and nonnegative. Using
the Monte Carlo simulations, we cal-
culate relative frequencies for σ2

τ . The
following table (Table ?? and Table ??)
show the results for the relative fre-
quency for 90% and 95% confidence in-
tervals of σ2

τ ’s for k = 3, 5, α = γ1k for
γ = 1and5, f = 0.2, 0.3, ..., 0.7, and

σ = 1. All results are illustrated with a
number of simulation runs M = 10000.
Both Table 2 and Table 3 show an im-
portant APP effect. As the precision
level becomes more stringent, the min-
imum sample size per group increases,
and this trend appears regardless of
whether the confidence level is set at
90% or 95% and whether the skewness
parameter α = 1kγ with γ = 1 or
γ = 5.



Asian Journal of Economics and Banking (2020), 4(2), 77–90 87

Table 2: The coverage probabilities for different σ2
τ when k = 3, c = 0.9, α = 1

and f = 0.2, 0.3, ..., 0.7.
f m σ2

τ = 0.1 σ2
τ = 1 σ2

τ = 2
0.2 59 0.9098 0.9015 0.8921
0.3 27 0.9034 0.9037 0.9005
0.4 16 0.9011 0.9060 0.9042
0.5 11 0.8990 0.8999 0.8971
0.6 8 0.8972 0.8918 0.8907
0.7 6 0.8943 0.8951 0.9042

Table 3: The coverage probabilities for different σ2
τ when k = 5, c = 0.95, α = 5

and f = 0.2, 0.3, ..., 0.7.
f m σ2

τ = 0.1 σ2
τ = 1 σ2

τ = 2
0.2 61 0.9557 0.9520 0.9524
0.3 28 0.9534 0.9512 0.9495
0.4 16 0.9554 0.9533 0.9532
0.5 11 0.9497 0.9502 0.9484
0.6 8 0.9557 0.9531 0.9471
0.7 6 0.9499 0.9492 0.9411

Fig. 1. The density curves of and the corresponding histograms of 90%
confidence intervals, respectively, for σ2

τ = 0, σ2 = 1, f = 0.5, and k = 3.

Fig. 2. The density curves of and the corresponding histograms of 95%
confidence intervals, respectively, for σ2

τ = 0, σ2 = 1, f = 0.5, and k = 5.

The following graphs show the den-
sity curves and the corresponding his-
tograms of 95% and 90% confidence in-

tervals, respectively, for σ2
τ = 0, σ2 = 1,

f = 0.5, and k = 5.
Because the trends observed in Ta-
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Fig. 3. Histogram and curves of data using both normal and skew normal from a
study of leaf area index (LAI) in 2010.

ble 2 and Table 3 are similar to APP
trends observed in previous articles,
this inspires confidence in the deriva-
tions. More important, however, the
histograms in both Figure 1 (corre-
sponds to Table 2) and Figure 2 (cor-
responds to Table 2) closely follow the-
orized curves. Therefore, both Table 2-3
and Figures 1-2 combine to support the
validity of the derivations.

AN ILLUSTRATIVE EXAMPLE

We will use the real data set with
size 96 provided by Ye and Wang (2015)
to illustrate the use of the skew normal

to fit the data pertained to leaf area in-
dex (LAI) of Robinia pseudoacacia in
the Huaiping Forest Farm of Shaanxi,
China, (from June to October in 2010)
(with permission of authors), in which
the moment estimates of parameters are
ξ̂ = 1.2585 for the location parameter ξ,
ω̂2 = 1.8332 for the scale parameter ω2,
and γ̂ = 2.7966 for the skewness (shape)
parameter γ. The graph above (Figure
??) shows the histogram and curves of
the data fitted by both normal and skew
normal, in which it is clear that skew
normal curve fits the data better than
the normal one.
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We now assume γ̂ = 2.7966 are
the known population information. For
f=0.3, as we see in the previous section,
the smallest sample size needed to meet
requirement that k = 4 (by month) is
m = 23 and so the total n is 92 when the
population skewness parameter γ is as-
sumed to be 2.8 with confidence level of
90%. Randomly choose a sample of size
92, the 90% confidence interval for σ2

τ

is [0, 2.6742], which includes the corre-
sponding moment estimate σ̂2

τ = 1.0394.
Note that for given precision and con-
fidence levels, the sample size we ob-

tained is the smallest one that guar-
antees our goal of having a 90% con-
fidence interval for σ2

τ . For any sample
size greater than the least one necessary
to meet specifications, the width of the
confidence interval will be even shorter.
More specifically, when we consider the
90% confidence interval for σ2

τ when
n = 96, it is [0, 2.2649] and the cor-
responding point estimate σ̂2

τ = 1.1366.
In summary, the theoretical simulations
support that the derived equations are
valid, and the example shows how they
can be applied to an existing data set.
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