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In principle, we can use many different character-
istics of a probability distribution. However, in
practice, a few of such characteristics are mostly
used: mean, variance, moments, correlation, etc.
Why these characteristics and not others? The
fact that these characteristics have been success-
fully used indicates that there must be some rea-
son for their selection. In this paper, we show
that the selection of these characteristics can be
explained by the fact that these characteristics are
1mwvariant with respect to natural transformations
— while other possible characteristics are not in-
variant.
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1 FORMULATION OF THE
PROBLEM

Need for probabilistic models. One of
the main objectives of science is predict
the future state of the world, i.e., to pre-
dict the future values of the world’s pro-
cesses.

Some processes are deterministic.
For example, in celestial mechanics, we
can predict the locations of the plan-
ets hundreds of years from now — and
indeed, such locations (and, in particu-
lar solar and lunar eclipses) — have been
successfully predicted hundreds of years
ago.

However, most other processes are
probabilistic. We cannot predict the ex-
act value of the stock market, we cannot
predict tomorrow’s temperature — but
what we can usually predict reasonably
well, based on our previous experiences,
are probabilities of different future val-
ues.

Need for numerical characteristics of
probabilistic models. In the com-
puter, everything is stored as num-
bers. From this viewpoint, describ-
ing a future-related probability distribu-
tion means describing certain numerical
characteristics of this distribution.

If we consider probabilities describ-
ing the values of a single quantity, we
need numerical characteristics of the
corresponding 1-D probability distribu-
tion. If we consider probabilities de-
scribing the values of several quanti-
ties, we need numerical characteristic of
the corresponding joint multi-D distri-
bution.

Which characteristics should we se-
lect? In principle, there are many possi-

ble numerical characteristics of a prob-
ability distribution:

® We Can use moments,

e we can use the values of the prob-
ability density function or of the
cumulative distribution function,

e we can use the characteristic func-
tion of the distribution, etc.;

see, e.g., [6].
Which of
should we select?

these characteristics

Which characteristic are usually se-
lected? Interestingly, in practice, only a
few of these characteristics are routinely
used.

If you give some raw 1-D data to
a scientist or to an engineer, this sci-
entist or engineer will first compute
the mean and the standard deviation;
maybe he or she will also compute the
skewness. If you give them 2-D data
they will also compute covariance and
correlations. These numerical charac-
teristic are so overwhelmingly used in
practice that many scientific calculators
have special buttons automatically com-
puting these characteristics

But why? The fact that these char-
acteristics have been actively used by
practitioners means that indeed, in
many practical situations, these partic-
ular characteristic have been very help-
ful. The fact that they have not been
replaced by any other possible charac-
teristics means that they are, in general,
more helpful than others.

A natural question is: why are these
characteristics more helpful than oth-
ers?
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What we do in this paper. In this pa-
per, we provide an answer to the above
“why” question. Namely, we show that:

e the most widely used numerical
characteristic of probability distri-
butions are invariant with respect
to natural transformations, while

e other possible characteristics are
not invariant.

This explains why the selected charac-
teristics are used.

Structure of this paper. We start, in
Section 2, with analyzing what are pos-
sible numerical characteristic of prob-
ability distributions. Then, in Section
3, we describe natural symmetries and
corresponding invariances. In Section
4, we formulate the main result: that
only moments — and characteristic de-
termined by different moments — are in-
variant. In Section 5, we explain the
ubiquity of specific combinations of mo-
ments such as variance, correlation, and
skewness. For readers’ convenience, all
the proofs are placed in a special Proofs
Section 6.

2 TOWARDS A GENERAL
DESCRIPTION OF POSSIBLE
NUMERICAL CHARACTERIS-
TICS OF PROBABILITY
DISTRIBUTIONS

Need for decision making. The ulti-
mate goal of predictions is to make de-
cisions. If we know where the stock
market will go, we should either buy
or sell the corresponding stocks. If
we know tomorrow’s temperature, then
we should dress accordingly — and, if

needed, get prepared to protect the
plants against a sudden cold.

So, when we select what numeri-
cal characteristics of probability distri-
butions, we should take into account
that these characteristics must be use-
ful for making a decision. In order to
make a good decision, we need to have
a good understanding of the person’s
preferences. Let us briefly recall how
these preferences are usually described
and how we can make a decision based
on these preferences; for a detailed de-
scription, see, e.g., [1-5].

How can we describe human prefer-
ences. In order to describe a person’s
preferences, a reasonable idea is to se-
lect two extreme alternatives, more ex-
treme that anything that we will actu-
ally encounter:

e a very good alternative A, which
is better than anything that we
will actually encounter, and

e a very bad alternative A_ which is
worse than anything that we will
actually encounter.

Then, for each number p from the inter-
val [0,1], we can form a lottery — that
we will denote by L(p) — in which:

e we get A, with probability p, and

e we get A_ with the remaining
probability 1 — p.

When p = 0, we have L(0) = A_, so
the corresponding lottery is worse than
any actual alternative A; we will de-
note this by A_ < A. As the proba-
bility p increases, the lottery becomes
better and better, and for p = 1, we
have L(1) = A, and thus, A < A,.
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It is easy to show that there ex-
ists a threshold sup{p : L(p) < A} =
inf{p : A < L(p)} that separates
probabilities for which A is better from
probabilities for which the lottery is bet-
ter. This threshold value is known as
the utility of the alternative A. It is usu-
ally denoted by u(A).

By definition of utility, for any small
value € > 0, we have

L(u(A) —e) < A< L(u(A) +¢).

For very small values e, the difference
between the probabilities u(A), u(A) —
e, and u(A) + € is practically indistin-
guishable. In this sense, we can say
that the alternative A is equivalent to
the lottery L(u(A)). We will denote this
equivalence by A = L(u(A)).

Clearly, if p < p/, this means that
the lottery L(p') is better. Thus, if
u(A) < wu(B), we have L(u(A)) <
L(u(B)) and, since A = L(u(A)) and
B = L(u(B)), that A < B. So, one al-
ternative is better than the other if its
utility is larger.

How can we make a decision? In prac-
tice, when we make a decision, we do
not know the exact consequence of each
of the possible actions a. At best, we
can, based on our prior experiences,
estimate the probabilities pq,...,p, of
possible consequences Aq,...,A,. Let
— u(A;) denote the utility of the i-
th alternative.

Each alternative A; is equivalent to
the corresponding lottery L(u;). Thus,
for the decision maker, the consequences
of selecting an action a are equivalent to
a two-stage lottery, in which:

e first, we select one of the con-
sequences A; with probability p;,

and then,

e depending on which consequence
A; we selected on the first stage,
we select the very good alter-
ative A, with probability u; and
the very bad alternative A_ with
probability 1 — u;.

As a result of this two-stage lottery, we
end up either with A, or with A_, and
the probability of selecting A, is equal
to

PLULF oo Dy U

By definition, this probability is the
utility u(a) of selecting an action a.
Thus, this utility is equal to the above
expression:

u(a):plul++pnun

We want to select the best action,
i.e., the action with the largest possible
value of utility. In mathematical terms,
the above formula for the utility of the
action simply means that the action’s
utility is equal to the expected value
E[u;] of the utility. So, to make a proper
decision, we need to know expected val-
ues Flu(x)] of different functions u(x)
— namely, functions describing the per-
son’s utility. Here, x may be a single
parameter, may be several parameters.

Usually, small changes in x lead to
equally small changes in our utility:
e.g., we do not expect much difference
between temperatures 24 C or 25 C, or
between predicting that the Dow-Jones
will rise by 101 or by 102 points. Thus,
it is reasonable to require that the util-
ity function u(x) is smooth (= differen-
tiable). Thus, we arrive at a following
definition.
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Definition 2.1. Let n > 1 by an in-
teger. By a characteristic, we mean
a mapping that assigns, to each ran-
dom vector X = (X1,...,X,,), the value
Elf(Xi,...,X,)], where f(x1,...,2,)
is a smooth function of n variables.

Comment. According to our definition,
characteristics and in 1-1 correspon-
dence with smooth functions. Thus, to
make the exposition clearer, in the fol-
lowing text, we will sometimes identify
a characteristic with the corresponding
function f(z1,...,z,).

Examples.

e For n =1 and f(x1) = 21, we get
the mean.

e Forn =1 and f(x,) = 2%, we get
the second moment.

e Forn = 1land f(z) =exp(w-z;-i),
we get different values of the char-
acteristic function, etc.

Need to select a finite set of character-
istics. In the computer, we can store
only finitely many numbers. Thus, we
need to select a finite set of characteris-
tics.

Some sets are equivalent: e.g., if we

know the mean and the second moment,
then we can also compute the expected
value of the functions 2z and 222, and
vice versa. Let us describe a general def-
inition.
Definition 2.2. We say that the
set of characteristics {f1,..., fm} and
{91, .., 9p} are equivalent if the follow-
ing two conditions are satisfied:

e the values E[f1], ..., E[fn] of the

characteristics from the first set

uniquely determine the values of
all the characteristics E[q], ...,
Elgy] from the second set, and

o the values Elgi], ..., E[g,] of the
characteristics from the second set
uniquely determine the values of
all the characteristics E[fi], ...,
E[fm] from the first set.

Proposition 2.1. The two sets of char-
acteristics { f1, ..., fm} and{g1,..., gp}
are equivalent if and only if the follow-
ing two conditions are satisfied:

e cach function g;(x) from the sec-
ond set is equal to a linear combi-
nation of functions from the first
set and 1, i.e., if there exist coeffi-
cients aj; for which, for all j and
all x, we have

9i(w) = ajo + aj - fi(z) + ...
+@jm - frm(2); and

e cach function f;(x) from the sec-
ond set is equal to a linear combi-
nation of functions from the first
set and 1, i.e., if there exist coef-
ficients b;j for which, for all i and
all x, we have

fi(x) = bio+bir-g1(x)+. . -+bip'9p($)-

3 NATURAL SYMMETRIES AND
CORRESPONDING
INVARIANCES

Possibility of re-scaling. In data pro-
cessing, we process the numerical val-
ues of different quantities. It is impor-
tant to mention, however, that for exact
same state of the world, the correspond-
ing numerical values will change if we
change the measuring unit. For exam-
ple:
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e If we measure distances in km and
then decide to switch to meters,
then all the numerical values will
multiply by 1000.

e If. in our borderline region be-
tween the US and Mexico, we
change the monetary units from
US dollars to Mexican pesos, then
all the numerical values are mul-
tiplied by approximately 20 (or
whatever the exchange rate will
be).

In general, if we replace the original
measuring unit with a A > 0 times
smaller one, then all the numerical val-
ues will be multiplied by \: z — A - x.
This transformation is known as re-
scaling.

Comment. In the above paragraph,
we explained re-scaling corresponding
to positive values A. In some situations,
negative values are also possible. For
example:

e For the electric charge (and for the
related quantities such as electric
current), the sign has been rather
arbitrarily chosen. Nothing will
change if we view what was previ-
ously considered positive as nega-
tive and vice versa.

e In economics, the positive trade
deficit in a trade of country A with
country B is equivalent to a nega-
tive deficit when considered from
the viewpoint of country B.

In view of this possibility, in the fol-
lowing text, we will consider re-scalings
with negative coefficients A\ as well.

Need for scale-invariance. Since the se-
lection of a measuring unit is usually
rather arbitrary, it makes sense to re-
quire that the result of data processing
not depend on the choice of the mea-
suring unit, i.e., that we should come
up with the same conclusion if we start
with re-scaled data.

Possibility of shift. For many quanti-
ties, the numerical value also depends
on the starting point. For example:

e when we measure time, we can
start from Year 0, or we can start
with the beginning of the financial
year, or with the beginning of the
quarter;

e when we measure temperature, we
can start with the temperature at
which water freezes — as in Cel-
sius scale — or with another start-
ing point as, e.g., in the Fahren-
heit scale;

e when we estimate the country’s
average or median income, we can
consider the absolute income — or,
which makes some sense, we can
subtract, from each income, the
minimum necessary to maintain
living, and only compare values in
excess of this minimum.

In general, if we replace the original
starting point with a new starting point
which is ¢ unit before it, then this num-
ber ¢ will be added to all the numerical
values © — = + c¢. This transformation
is known as shift.

Need for shift-invariance. Since the se-
lection of a starting point is often rather
arbitrary, it makes sense to require that
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the result of data processing not depend
on the choice of the starting point, i.e.,
that we should come up with the same
conclusion if we start with shifted data.

4 INVARIANT CHARACTERIS-
TICS: THIS EXPLAINS WHY
MOMENTS

Let us apply invariance ideas to se-
lection of characteristics. In view of
the arguments presented in the previous
section, it is desirable to select charac-
teristics in such a way that the resulting
information not change if we re-scale or
shift the numerical values.

Definition 4.1. We say that a finite set
of characteristics

{filzr, . yxn), ooy fm(zr, oo 20)}

is shift-invariant if for every tuple ¢ =
(c1,...,¢cn), once we know the values

Bl (X1, X))oy Blfm( X1,

then we should be able to uniquely de-
termine the values

E[fl<X1 +cr, .. 7Xn + Cn)]

for all 1.

Definition 4.2. We say that a finite set
of characteristics

{fi(z1, .. cfm(T, .o xn)}

is scale-invariant if for every tuple ¢ =
(c1,...,¢cn), once we know the values

ElA(X o X )]sy Blfm(X1, ..

then we should be able to uniquely deter-
mine the values E|[fi(c1-X1,. .., ¢y X,)]
for all 1.

S

) Xn)]7

Discussion. To describe all possible
shift- and scale-invariant sets of charac-
teristics, we need to introduce the fol-
lowing auxiliary definitions.

Definition 4.3. By a moment, we
mean a characteristic corresponding to
flay, .. xy) =2 - ab for some

non-negative integers k;.

Notation. In the following text, the cor-
responding values E|f]| with be denoted
by letter M with indices listing each
variable k; times. For example, E[X]]
will be denoted by M;, F[X?] by M,
EX; - X;] by M, etc.

Definition 4.4. We say that a finite set

of moments is an ideal of moments if for
each moment ¥ - ... - 2k this set also

includes all the moments xlfll e
for which k! < k; for alli.
Examples.

e All first moments My,..., M,

form an ideal.

» Xn)l;

e The set of all first and second mo-
ments M; and M;; forms an ideal,
etc.

Discussion. Now, we are ready to for-
mulate our main result.

Proposition 4.1. For each finite set of
characteristics {f1,..., fm}, the follow-
1ng two conditions are equivalent to each
other:

e the set of characteristics is shift-
and scale-invariant, and

e the set of characteristics is equiv-
alent to an ideal of moments.

Discussion. This results explains the
ubiquity of moments.
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5 INVARIANT COMBINATIONS
OF CHARACTERISTICS: THIS
EXPLAINS WHY VARIANCE,
COVARIANCE, COEFFICIENT
OF VARIATION, CORRELATION,
AND SKEWNESS

What we do in this section. In the
previous section, we showed that with
respect to natural transformations, the
only invariant characteristics are, in ef-
fect, moments.

The next question is why some com-
binations of moments are actively used
— while others are used rarely. In this
section, we show this can also be ex-
plained by invariance. Specifically, we
show that invariances explains the ubig-
uity of five such widely used combina-
tions: variance, covariance, correlation,
coefficient of variation, and skewness.

Comment. In contrast to a new (and
not so easy to prove) result from the
previous section, results from this sec-
tion are largely known — and are easy
to prove. We included these results into
the paper, since they nicely supplement
the explanation provided in the previ-
ous section — of why moments and their
combinations are mostly used — by ex-
plaining the ubiquity of several specific
combinations of moments.

Definition 5.1. We say that a map-
ping F(Xy,...,X,) that assigns a nu-
merical value to each random wvector
(X1,...,X,) is shift-invariant if for
each random vector X = (X1,...,X,)
and each tuple ¢ = (¢q,...,¢,) of real
numbers, F assigns the same value to
the original random vector (X1, ..., X,)

and to its shift (X1 +c1,..., Xn+¢p):

F(Xl, ce 7Xn) = F(X1—|—Cl, Ce 7Xn+cn)-

Definition 5.2. We say that a map-
ping F(Xy,...,X,) that assigns a nu-
merical value to each random wector

(X1,...,X,) is scale-invariant if for
each random vector X = (Xy,...,X,)
and each tuple ¢ = (cq,...,¢c,) of real

numbers, F assigns the same value to
the original random vector (X, ..., X,)
and to its re-scaling (c1- X1, ..., ch-Xp):

F(Xl,...,Xn) :F(Cl'Xl,...,Cn'Xn).

Discussion. Which combinations of mo-
ments are shift and/or scale-invariant?
Let us first consider combinations of

first moments M; = E[X}].

Proposition 5.1. No combination
f(My, ..., M,) of first order moments
15 shift-invariant.

Proposition 5.2. No combination
f(My, ..., M,) of first order moments
15 scale-invariant.

Discussion. If we also allow second-
order moments M;; = E[X; - Xj], then
shift- and/or scale-invariant combina-
tions become possible.

Proposition 5.3. A combination
FUM;},{M,;}) of the first two mo-
ments is shift-invariant if and only if it
a function of the variances V; = M;; —
M? and covariances Cij = My;—M;-M;.

Discussion. This result explains the
ubiquity of variance and covariance.
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Proposition 5.4. A combination
FEM;}, {M;;}) of the first two mo-
ments is scale-invariant if and only if
it a function of the coefficients of vari-
ation C'V; = % (where o; o VV;) and

7
the coefficients of covariance CV;; =

Cyy

M; - M;

Discussion.

e This result explains the ubiquity
of the coefficient of variation.

e For second-order moments, it is
also possible to have combinations
which are both shift- and scale-
invariance.

Proposition 5.5. A combination
FEM;}, {M;;}) of the first two mo-
ments 1s shift- and scale-invariant if
and only if it a function of the corre-
lations

Pij = —— -
0; -0y

Discussion.

e This result explains the ubiquity
of correlation.

e For the case when we have only
one variable, the above result
shows that no combination of the
first and second moments is shift-
and scale-invariant. It turns out
that such an invariant combina-
tion is possible if we also allow the
third moment.

Proposition 5.6. A combination
f(My, Myy, Mi11) of the first three mo-
ments is shift- and scale-invariant if
and only if it a function of the skewness

(2]

e This result explains the ubiquity
of skewness.

ps = FE

Discussion.

o If we also allow the fourth mo-
ment, we get a function of skew-
ness and kurtosis:

Proposition 5.7. A combination
f(My, Miy, Mi11, Mi111) of the first four
moments s shift- and scale-invariant
if and only if it a function of the
skewness pz and of the kurtosis iy =

2]

6 PROOFS

E

Proof of Proposition 2.1. Clearly, if
g](a:) = aj0+aj1~f1(x)—|—. . .+(Ijm'fm(.%’),
then

Elg;] = ajotaji-E[fil+. . .+ ajm E[fm].

So, if we know the values E[f;], we will
indeed be able to uniquely determine
the values of E[g;] — and vice versa.
Thus, to prove the proposition, it
is sufficient to prove that if, e.g., a
function ¢;(x) cannot be represented
as the desired linear combination, then
we cannot uniquely determine the value
of E[g1] based on the known values of
E[f;]. Indeed, let us assume that g; is
not equal to a linear combination of the
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functions f; and 1. On the space of all
the functions, we have a natural scalar

(dot) product (f,g) [ f(x) - g(x)du.

We can then use the usual Gram-
Schmidt orthonormalization in the lin-
ear space spanned by the functions f;
and 1 and find, as their linear com-
binations.  The orthonormal vectors
e1, ..., e, that span the exact same lin-
ear space — and for which (e;, e;) = 1 for
all ¢ and (e;, e;) = 0 for all 4 # j. Then,
the function g, (z) can be represented as

g1(x) = (g1,e1) -ei(z) + ...

+(g1, €q> ‘ 6q<x> + e(x),

where the difference
e(x) = gi(x) — (g1, e1) - ea(x) — ...

—(g1,€q) - €()

e orthogonal to all the vectors e;(x)
— and thus, to their linear combi-
nations f; and 1, and

e different from 0 — since otherwise,
g1(x) would be equal to a linear
combination of the functions f;
and 1.

Due to the fact that g;(z) is orthogonal
to all the functions e;(z), we conclude
that (g1,e) = (e, e) and, since the dif-
ference e(x) is not 0, we have

(g1,€) = (e,e) > 0.

Let us now take a probability distri-
bution which is everywhere positive on
some interval — e.g., a uniform distribu-
tion, with the probability density func-
tion p(z) = const. Then, for small €, the

function p(x) o p(z) + ¢ -e(x) is also
everywhere positive. Since the function
e(z) is orthogonal to 1, i.e., [e(z)dx =
0, we get [ pi(z)de = [ p(z)de = 1,
so p1(z) is also a probability distribu-
tion. Since e(z) is orthogonal to all the
functions f;(x), we have

Ei[fi] = /fi(x)-m(x) dx

~ [ @) pla) do = EL
for all . On the other hand,

Bilo) = [ 9e) pu(o) do
— [ n@rpta)dote: [ gi(a)eta) do =

mm+e/@u»dmm.

We know that [g¢i(z) - e(z)dz =
(g1, €) # 0, 50 Er[g1] # Elgu].

Thus, we have two distributions p
and p; for which the expected values
E[f;] are the same, but the expected val-
ues of E[g;] are different. Thus, the sets
{f:} and {g,} are indeed not equivalent.
The proposition is proven.

Proof of Proposition 4.1.

1°. One can easily check that the set of
characteristics corresponding to an ideal
of moments is shift- and scale-invariant
— and thus, that each equivalent set of
characteristics is also shift- and scale-
invariant. So, to complete the proof, we
need to show that every shift- and scale-
invariant set of characteristics is equiv-
alent to an ideal of moments.

2°. Let us first analyze the consequences
of shift-invariance. Due to Proposition
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2.1, shift-invariance implies that for all
possible shifts ¢ = (cq,...,¢,), each
shifted function f;(x1 + c¢1,..., 2, + Cp)
is equal to a linear combination of the
original functions and of 1, with coeffi-
cients possibly depending on ¢;:

filxiter, .. enten) = apler, ... cn)+

CLil(Cl,...,Cn) . fl(.’lj‘l,...,dln> + ...
taim(cry . oyen) s fm(Tr, .o xn). (1)

Let us first consider the shift by one
of the variables. Without losing gen-
erality, we will assume that this vari-

able is x;. Let us fix the values
xéo), e ,x%o) of all other variables, i.e.,

let us consider functions of one vari-
able E(ZEI) = fz (Il, ZEgO), . 7$$LO)> and
Aij(c1) = aij(c1,0,...,0). For these
functions, the above equation takes a
simplified form

E(.ﬁﬂl + Cl) = AiO(Cl) + ...

+Ai1(cl) . Fl(l‘l) “+ ...
+Aim(c1) - (1), (2)

In this equality, for each 7, we have m+1
unknown functions A4;;(c;). To find the
values of these functions, let us select
m + 1 different value of z;:

xgo), e ,x§’">.
Substituting these m + 1 values into the
formula (2), we get the following system
of m + 1 linear equations for m + 1 un-
knowns A;;(c1):

E (.Tgo) —+ Cl> = Aio(cl) + ...

+Ai(er) - By <x§0)> +...

+Aim(c1) - B <x§0)> :

E <$§m) + Cl> = Aig(cl) —+ ...
+Ai1(C1) : Fl (f,lfgm)> + ...

+Aim(cr) - By, (:pﬁ”“) )

By Cramer’s rule, the solution to
this system is a linear combination of
the right-hand sides F; <x§k) + cl> with
coefficients depending on the values
F; (:ng)> and thus, not depending on
c1. The functions F; are smooth, thus
their linear combination is also smooth.
So, all the functions A;;(cy) are differ-
entiable.

Since all the functions in the equal-
ity (2) are differentiable, we can differ-
entiate both sides with respect to ¢; and
then take ¢; = 0. As a result, we get

E/<I1) = aio—i‘()éil'Fl(l‘l)—i‘. . .+Oéim'Fm(l’1),

where we denoted «;; o A;(0). We
have such an equation for each 7. Thus,
for m unknown functions Fj(z1), we
have a system of linear differential equa-
tions with constant coefficients:

Fi(z1) = aqotaqr-Fi(z1)+. . .+aim Fp(z1);

Fél(.%j) = amo—l—anl-Fl(xl)—i—. . .—|—amm-Fm(m1).

We can transform this system to a
more standard form if we add an aux-
iliary function Fy(z;) = 1 with equa-
tion F{(x1) = 0 and replace a;y with an
equivalent expression «yqg - Fy(x1):
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Fll(.l’1> = Q0 Fo(ﬂfl) —|—Oéll . Fl(xl) +...
+a1m : Fm(x1>7

Fé@(%) = O[mO'Fo([El)+Oén1'F1(ZE1)+. ..
+ - Fon(x1).

It is known that a general solution to
such a system of equations is a linear
combination of functions ¥ - exp(z - z1),
where z are eigenvalues of the matrix
@;;, and a natural number k does not ex-
ceed the multiplicity of the correspond-
ing eigenvalue minus 1 — i.e., in this
case, k < m. In general, eigenvalues
are complex numbers z = a+b-i. In
terms of real numbers, the general solu-
tion is a linear combination of the func-
¥ . exp(a - xy) - sin(b - 2;) and

tions 7
2% exp(a-xy) - cos(b- xy).

3°.  Let us now consider the conse-
quences of scale-invariance. Similar to
Part 2 of this proof, we get the formula

Fi(c1-z1) = Bio(er)+Bii(er)-Fi(z)+. ..

+Bim(c1) + Frn(1) (3)

for some functions B;;(c1). Similarly to
Part 2, we can conclude that the func-
tions B;j(¢1) are smooth. Thus, we can
differentiate both sides of the formula
(3) with respect to c¢;, take ¢; = 1, and
thus, get the following equation:

xy - Fj(x1) = Bio+ B - Fi(x) + ...

+5zm : Fm(Il)a

where we denoted f;; o B;;(0). The

left-hand side can be rewritten as
dF;  dFy
dr,  dvi/z,’

|

dF1 def

ie., as ——, where we denoted L =

In(z1) (so that 1 = exp(L)). Hence,
in terms of the new variable L., for
the corresponding functions G;(L) =
Fi(exp(L)), we get

Gi(L) = Bio+Bi-G1(L)+. . A+ BimGr(L).

With respect to L, we again get a sys-
tem of linear differential equations with
constant coefficients. So, its general
solution is a linear combination of the
functions L* - exp(a - L) - sin(b - L) and
L* -exp(a- L) - cos(b- L). Substituting
L = In(z;) into these formulas and tak-
ing into account that exp(a - In(zy)) =
(exp(In(z1))® = =z, we conclude that
Fi(z1) is a linear combination of func-
tions (In(z))* - z¢ - sin(b - In(x;)) and
(In(z1))* - 29 - cos(b - In(xy)).

4°. From Part 2 and 3, we see each func-
tion F;(z1) has to be represented in two
different forms. One can show that the
only expression common to both forms
is x’f for some natural £ < m. Thus,
each function Fj(z;) is a linear combina-
tion of such expressions — and is, thus, a
polynomial — and a polynomial of order
<m.

5°. Now we know for each combina-
tion of xq, ..., the dependence on z; is
a polynomial of order < m. The coef-
ficients of this polynomial, in general,
depend on the values g, 23,... So, if
we fix the values xgo), e ,:Eg)), then for
the corresponding function H;(x1, z5) =

fi (xl, xQ,ng), e ,x,(qo)>, we have

HZ'<£L'1, .772) = &0(%2) + Gl(.flfg) R T

U (22) - 27", (4)
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Similarly, when we fix x;, the depen-
dence on x9 can also be described as a
polynomial of degree < m:

Hi(xl,l’g) = bo(l‘l) + bl(flfl) “To+ ...

+b (1) - 27,

SO
aop(xe) + ay(z2) - o1 + ...

A () - 20 =
bo(x1)+b1 (1) o+ . .+bp (1) 25" (5)

To determine m + 1 coefficients a;(x2),
let us select m + 1 different value of x;:
29 2{™ Substituting these m -+ 1
values into the formula (5), we get a sys-
tem of m + 1 linear equations for m + 1
unknowns a;(xs):

w20 () =

bo (a?go))—i—ln <a:§0))-a:2+. b, (xgo)).xgn;

ao(xg)—l-al(xg)-xgm)—f—. ccam(z2)- (xgm)) =

bo (xgm)>—|—b1 (asgm))-xg%—. ..Fbp, <x§m))x31

By Cramer’s rule, the solution to this
system is a linear combination of the
right-hand sides — which are polynomi-
als in zo — with coefficients depending

on the values <x§m) ’ (and thus, not
depending on 5). A linear combina-
tion of polynomials is also a polynomial.
So, all the coefficients a;(x2) are polyno-
mials and thus, the expression (4) is a
polynomial of two variables xy and x,.
Similarly, we can prove that it is a
polynomial of 1, x5, and x3, etc., un-
til we prove that each original function
filz1,...,x,) is a polynomial.

6°. To complete the proof, we must
show that the corresponding set of poly-
nomials is equivalent to an ideal of mo-

ments. Indeed, let us show that it is
equivalent to the set of all monomials
g ...z that are parts of the poly-

nomials f;, plus monomials with k; < k;
for all 7.

Of course, if we have all these mono-
mials, then we can get all the polynomi-
als f; as their linear combinations. So,
the only thing we need to prove is that
if we know the value of E[f;], then we
know the values E[m] for all monomials
forming f; — as well as for all monomials
with &k < k;. Let us perform this “sepa-
ration” variable by variable. Let us start
with the variable z;. In terms of z; the
polynomial f; can be represented as

fi=ao+ar+ ...+ apy,

where a; combines terms proportional
to z¥. For each such term,

ag(C1-w1, Ta,y ..y Tyy) = clf-ak(:cl, cey TR

Due to scale-invariance, for each ¢;, the
function

,Tp) =ao+cpap+ ...

(5)
is a linear combination of the original
functions fi,..., fin-

We can select m + 1 different values
e AV, ™. Substituting these val-
ues into the formula (5), we get a system
of m + 1 linear equations with constant

coefficients for m + 1 unknowns a;:

fi(cl c X1, T,

m
+cy - am

fi <c§°) - X1, To, ... ,:L‘n> = ao—l—cgo)-aﬁ. ..

+ (cg0)> © A
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fi (Cgm)

+(d™)" - .
A general solution to this system is a lin-
ear combination of the left-hand sides.
Since each left-hand side is a linear com-
bination of the original functions f;, we
conclude that all the functions a; are
also linear combinations of the original
functions f;.

Each function a; has z; only in one
power. Similarly, we can “split” each ex-
pression a; into sub-expressions corre-
sponding to different powers of x4, etc.
— until we conclude that all the mono-
mials from each original polynomial can
be represented as linear combinations of
the original functions f;.

The last thing we need to prove is
that if we have a monomial 5" -. . .- zkn,
then for each k; < k;, we also have a
monomial :Elfll ke Indeed, due to
shift-invariance, with the original mono-
mial 2% - ... 2 the shifted function
(1 + 1)k (2, +1)* is also a linear
combination of the original polynomials
fj- The expansion of this function into
m(/)nomials/ includes all the monomials
:U]fl o exhn with k. < k;. So, as we have
proved earlier, all these monomials with
ki < k; are also linear combinations of
the original functions f;.

The equivalence between the origi-
nal set and the ideal of moments is thus
proven, and so is the proposition.

Proof of Proposition 5.1: it follows
from the Proposition 5.3 (see below).

Proof of Proposition 5.2: it follows
from the Proposition 5.4 (see below).

Proof of Proposition 5.3. It is easy to
check that variances and covariances are

(m)
“ T, Lo, ... ,xn> = aop+cy -ar1+. ..

shift-invariant, and thus, that any com-
bination of variances and covariances is
also shift-invariant.

Let us prove that, vice versa, any
shift-invariant combination is a function
of variances and covariances. Indeed, by
definition of shift-invariance, the value
of this combination should not change if
we shift the original random vector. In
particular, we can shift it by subtract-
ing the means, i.e., by taking ¢; = —M,;.
Then, for the shifted random variable
X! = X; — M;, the first moments M/
will be equal to 0. For the second mo-
ments, we have

Mj; = E[X;- X}] =
Bl(X; — M;) - (X; — Mj)| =
E[X; X;— X, M;— M;- X, +M,-M,] =
E[X:-X,|—M;-E[X;]— M;-E[X,]+ M;-M,.

Here, E[X;] = M; and E[X,| = M;, so
Mj; = M;; — M; - Mj. For i = j, this is
variance V;, for ¢ # j, this is covariance
C;;. Thus, shift-invariance means that

FUM:}, {Mi;3) = £(0,{Vi}, {Cis}).

This proves that this combination
depends only on the variances and co-
variances.

Proof of Proposition 5.4. It is easy to
check that coefficients of variation and
of covariance are scale-invariant, and
thus, that any combination of coeffi-
cients of variation and covariance is also
scale-invariant.

Let us prove that, vice versa, any
scale-invariant combination is a func-
tion of coefficients of variation and co-
variance. Indeed, by definition of scale-
invariance, the value of this combina-
tion should not change if we re-scale
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the original random vector. In partic-
ular, we can re-scale it by dividing each
random variable by M;, i.e., by taking
¢; = 1/M;. Then, for the re-scaled ran-
dom variable X! = X;/M;, the first mo-
ments M, will be equal to 1. For the
second moments, we have
Xi

M%:EMjXﬂ:E[M;

k}: |“><
I

ElX; - X;] My
M;-M; — M;-M;

For i = j, since My; = V; + M?, we get

Vit M2V,
V2 M2

)

M, = +1=1+CV2

For ¢ 7£ j, since Mij = Cz‘j —f—MZ 'Mj, we
have

v Gt Mo My
M; - M,
1=1+CV,,.

M;A@+ + OV

Thus, scale-invariance means that

FUM;}, {Mi;}) =
F0,{1+CV2} {1+ CVy}).

This proves that this combination
depends only on the coefficients of vari-
ation and covariance.

Proof of Proposition 5.5. It is easy to
check that each correlation is shift- and
scale-invariant, and thus, that any func-
tion of the correlations is also shift- and
scale-invariant.

Let us prove that, vice versa, any
shift- and scale-invariant combination is
a function of correlations. Indeed, due
to Proposition 5.3, since this combina-
tion is shift-invariant, it has the form

g({Vi},{Ci;}) for some function g. By
definition of scale-invariance, the value
of this combination should not change if
we re-scale the original random vector.
In particular, we can re-scale it by di-
viding each component X; by the corre-
sponding standard deviation o;, i.e., by
taking ¢; = 1/0;. After this re-scaling,
each difference X; — M; is also divided
by o;. So, for thus re-scaled variables,
we have

Vi = Bl(X] ~ M)?] =

X, — M; X;— M,
E : -
g; o;
E[(X; — M;)?]
o? -

=1

Sl

and for ¢ # 7, we have
¢y = BI(X! — M) (X}~ M))] =
Xi—M; X;—M;|

E
o; 0j
E((Xi — M) - (X; — M) Cy o
0i0j 0i*0j v
Thus, scale-invariance means that

g{Vi} {C45}) = g({1}, {pii})-
This proves that this combination
depends only on the correlations.

Proof of Proposition 5.6. It is easy
to check that skewness is shift- and
scale-invariant, and thus, that any func-
tion of skewness is also shift- and scale-
invariant.

Let us prove that, vice versa, any
shift- and scale-invariant combination is
a function of skewness. Let us shift
X7 by subtracting M; and then re-
scale it by dividing the resulting differ-
ence X; — M; by o;. One can check
that for the resulting random variable
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X, - M
X, = 211 we will have M| = 0,

01
Mi, =1, and M{,; = u3. Thus, due to
shift- and scale-invariance, we have

f(My, My, Migr) = (0,1, fi3).

This proves that this combination
depends only on the skewness.

Proof of Proposition 5.7 is similar to
the proof of Proposition 5.6.
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