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This paper presents a novel formulation for static limit 

analysis of structures, for which the Airy stress function is 

approximated using stabilized Radial Point Interpolation Mesh-

free method (RPIM). The stress field is determined as second-order 

derivatives of the Airy function, and the equilibrium equations are 

automatically satisfied a priori. The so-called Stabilized 

Conforming Nodal Integration (SCNI) is employed to ensure a 

present method is truly a mesh-free approach, meaning that all 

constraints in problems are only enforced at nodes. With the use of 

the Airy function, SCNI, and Second-Order Cone Programming 

(SOCP), the size of the resulting problem is kept to be minimum. 

Several benchmark problems having arbitrary geometries and 

boundary conditions are investigated. The obtained numerical 

solutions are compared with those available in other studies to 

perform the computational aspect of the proposed method.  

1. Introduction 

The estimation of limit load plays a crucial role in structural design. Originally, analytical 

approaches and numerous methods such as yield line, slip line, or strip approaches were widely 

used. However, in engineering practice, these procedures are incapable of handling the structures 

with complicated geometries and loading conditions, which require large numerical computations. 

Consequently, numerical methods based on bound theories and mathematical programming have 

been developed in the last few decades. Various numerical discretization schemes and 

mathematical algorithms have been proposed in the framework of limit analysis. Finite Element 

Methods (FEM) are well-known as the most commonly used tools in this field. There are three 

basic types of finite element models, i.e., displacement, equilibrium, and mixed formulations, for 

which the contributions can be found in Hodge and Belytschko (1968), Belytschko and Hodge 

(1970), Nguyen (1976), Pixin, Mingwan, and Kehchih (1991), Capsoni and Corradi (1997), 

Christiansen and Andersen (1999), Andersen, Christiansen, and Overton (1998), Capsoni (1999), 

Krabbenhoft and Damkilde (2003), Yu and Tin-Loi (2006), Le, Gilbert, and Askes (2010), Bleyer 

and De Buhan (2013). However, the creation of the mesh playing an important role in FEM 

implementation takes most of the total computational cost. There are several issues generated by 

the mesh; for example, in fracture problems, FEM may fail in handling the discontinuities at crack 

paths and crack tips; or in large deformation problems, for which the continuous meshing of the 

domain is required, the very fine mesh is needed, increasing the cost. The low order of shape 

function is also an obstacle of FEM. For instance, dealing with the equilibrium equations in static 

formulation, the Airy stress function, known as one of the most efficient treatments, is usually 
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applied. The stress field is approximated by second-order derivatives of the Airy function, which 

cannot be obtained using FEM. Consequently, novel approaches, so-called mesh-free methods, 

have been continuously developed and significantly devoted to the development of limit analysis 

in recent years. Various meshless models have successfully applied to this area, for instance, 

Element-Free Galerkin (EFG) method (S. Chen, Liu, & Cen, 2008; Le, Gilbert, & Askes, 2009; 

Le et al., 2010; Le, Askes, & Gilbert, 2012; Le, Ho, & Nguyen, 2016), Natural Element Method 

(NEM) (S. T. Zhou & Liu, 2012; S. Zhou, Liu, & Chen, 2012), Radial Point Interpolation Method 

(RPIM) (F. Liu & Zhao, 2013; Mohapatra & Kumar, 2019), integrated Radial Basis Function 

(iRBF) method (Ho, Le, & Tran, 2016; Ho, Le, & Tran, 2018; Ho & Le, 2020; Ho, Le, & Nguyen, 

2021). Dealing with the optimization problems, a number of optimization tools have been 

developed, such as linear programming (Nguyen, 1984; Sloan, 1988), linearizing yield surfaces 

(Maier, 1970; Tin-Loi, 1990), Newton algorithm (Andersen, 1996; Gaudrat, 1991), or primal-dual 

interior-point method (G. R. Liu & Karamanlidis, 2003; Nesterov & Nemirovskii, 1994). 

In this study, a novel equilibrium formulation for limit state analysis of structures is 

developed. The Airy stress function is approximated using stabilized RPIM method (Ho, Le, & 

Phan, 2020), obtained by combining the original RPIM (G. R. Liu & Karamanlidis, 2003) and 

SCNI scheme (J. S. Chen, Wu, Yoon, & You, 2001). The SCNI method allows the numerical 

integration to be performed at nodes only and hence reduces the computational cost. The stress 

field is determined as the second derivative of the Airy function, leading to only one stress variable 

being needed per node. With the use of the Airy function, the equilibrium equations are satisfied 

priorly, meaning that they can be eliminated in the formulated problems. The stabilized RPIM 

method is a truly mesh-free; hence, the constraints in problems are only enforced at nodes. The 

optimization problem, which is kept in minimum size, is cast as SOCP and rapidly solved using 

the Mosek software package (MOSEK ApS, 2019). 

2. Airy-based static formulation of limit analysis 

Consider a rigid-perfectly plastic body of area Ω with kinematic boundary Γu, static 

boundary Γt, and subjected to the body force b, to the external pressure t. A statically admissible 

stress field is assumed, and the lower bound of the limit load multiplier will be obtained if the 

equilibrium conditions are satisfied and the yield criterion is not violated everywhere. The 

mathematical formulation of lower bound limit analysis can be expressed as follows 

 

 

max

0,    in 

s.t ,     on 

0,   in  

tt

 





 



  


 


 

n
        (1) 

where  is differential operator, n is an outward surface normal matrix, (σ) is the yield 

function. In this study, the von Mises yield criterion is used, and the failure function can be given as 

 𝜓(𝜎) = {
√𝜎𝑥𝑥

2 + 𝜎𝑦𝑦
2 + 𝜎𝑥𝑥𝜎𝑦𝑦 + 3𝜎𝑥𝑦

2 − 𝜎𝑝,   for plane stress

√
1

4
(𝜎𝑥𝑥 + 𝜎𝑦𝑦)

2
+ 𝜎𝑥𝑦

2 − 𝜎𝑝,          for plane strain
         (2) 

with (σxx, σyy, σxy) denotes stress components, σp is plastic stress of material. 

The stress field must satisfy the following equilibrium condition 

   𝛻𝜎(𝑥) + 𝑓 = 0,   ∀x ∈ Ω                                                        (3) 
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The body force can be derived from a potential function V as 

      𝑓 = −𝛻𝑉                 (4) 

If the stress fields in two dimensions are determined based on Airy stress function φ as 

   𝜎𝑥𝑥 =
𝜕2𝜑

𝜕𝑦2 + 𝑉,   𝜎𝑦𝑦 =
𝜕2𝜑

𝜕𝑥2 + 𝑉,   𝜎𝑥𝑦 = −
𝜕2𝜑

𝜕𝑥𝜕𝑦
          (5) 

The equilibrium equation (3) is automatically satisfied a prior, as demonstrated in the following  

   
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
+ 𝑓𝑥 =

𝜕(
𝜕2𝜑

𝜕𝑦2+𝑉)

𝜕𝑥
−

𝜕(
𝜕2𝜑

𝜕𝑥𝜕𝑦
)

𝜕𝑦
−

𝜕𝑉

𝜕𝑥
= 0 

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+ 𝑓𝑦 = −

𝜕(
𝜕2𝜑

𝜕𝑥𝜕𝑦
)

𝜕𝑥
+

𝜕(
𝜕2𝜑

𝜕𝑥2 +𝑉)

𝜕𝑦
−

𝜕𝑉

𝜕𝑦
= 0           (6) 

With the absence of body force, the stress components can be rewritten as 

   𝜎𝑥𝑥 =
𝜕2𝜑

𝜕𝑦2
,   𝜎𝑦𝑦 =

𝜕2𝜑

𝜕𝑥2
,   𝜎𝑥𝑦 = −

𝜕2𝜑

𝜕𝑥𝜕𝑦
         (7) 

The principle of the lower bound limit formulation can be now rewritten as follows 
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 It is noted that using Airy function, three stress components (σxx, σyy, σxy) can be calculated 

via stress function φ(σ) as seen in Equation (7), meaning that only function φ(σ) need to be 

approximate. In addition, the approximated stress function has to satisfy static boundary conditions 

and yield function only. 

3. Radial point interpolation mesh-free method 

The approximate function for a set of scattered nodes 𝒙𝑄
𝑇 = [𝑥1, 𝑥2, . . . , 𝑥𝑁] ∈ 𝛺 is obtained 

by interpolating pass through nodal value as  

   𝑢ℎ(𝒙) = 𝑹(𝒙)𝒂 + 𝒑(𝒙)𝒃            (9) 

where 𝒂𝑇 = {𝑎1, 𝑎2, . . . , 𝑎𝑁} and 𝒃𝑇 = {𝑏1, 𝑏2, . . . , 𝑏𝑀} are the coefficient vectors related to 

radial basis function (RBF) 𝑹(𝒙) and polynomial basis function (PBF) 𝒑(𝒙), respectively, 𝑁 is a 

number of nodes in the computational domain, 𝑀 is a number of terms in 𝒑(𝒙). 

The matrix form of Equation (9) when enforcing 𝑢ℎ(𝒙) at scattered nodes in a problem 

domain can be expressed as follows 

    𝑼 = 𝑹𝑄𝒂 + 𝑷𝑀𝒃         (10) 

where 𝑹𝑄 is given by   

   𝑹𝑄 = [

⋯
𝑅1(𝑟𝑘)

⋯

⋯
𝑅2(𝑟𝑘)

⋯

⋯
⋯
⋯

⋯
𝑅𝑁(𝑟𝑘)

⋯
]

𝑁×𝑁

       (11) 

with 𝑟𝑘 =∥ 𝒙𝑘 − 𝒙𝐼 ∥ is the distance from the point 𝐼𝑡ℎ to node 𝒙𝑘 within the set𝒙𝑄. In this 

study, the best-ranked function in terms of accuracy, so-called Multi-Quadric (MQ), is employed 

     𝑅𝐼(𝑟𝑘) = √𝑟𝑘
2 + 𝑐𝐼

2              (12) 
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where 𝑐𝐼 = 𝛼𝑠𝑑𝐼 is the shape parameter with 𝛼𝑠 > 0 and 𝑑𝐼 is the minimal distance from 

point 𝒙𝐼 to its neighbors. 

To guarantee the unique approximation of function, the polynomial term must satisfy the 

following condition   

      𝑷𝑀
𝑇 𝒂 = 0         (13) 

The Equations (10) and (13) can be combined and rewritten as follows   

    [
𝑹𝑄

𝑷𝑀
𝑇

𝑷𝑀

𝟎
] {

𝒂
𝒃

} = {
𝑼
𝟎

}         (14) 

Or     𝑮 {
𝒂
𝒃

} = {
𝑼
𝟎

}                      (15) 

The coefficient vectors 𝒂 and 𝒃 can be computed in an efficient manner (G. R. Liu & 

Karamanlidis, 2003) as 

   𝒂 = 𝑹𝑄
−1𝑼 − 𝑹𝑄

−1𝑷𝑀𝒃;     𝒃 = 𝜒𝑏𝑼         (16) 

where   

    𝜒𝑏 = [𝑷𝑀
𝑇 𝑹𝑄

−1𝑷𝑀]−1𝑷𝑀
𝑇 𝑹𝑄

−1         (17) 

Substituting 𝒃 to Equation (13), vector 𝒂 can be obtained by 

     𝒂 = 𝜒𝑎𝑼          (18) 

where   

   𝜒𝑎 = 𝑹𝑄
−1[1 − 𝑷𝑀𝜒𝑏] = 𝑹𝑄

−1 − 𝑹𝑄
−1𝑷𝑀𝜒𝑏        (19) 

The approximation function in Equation (6) can be now rewritten as    

   𝑢ℎ(𝒙) = [𝑹(𝒙)𝜒𝑎 + 𝒑(𝒙)𝜒𝑏]𝑼 = ∑𝑁
𝐼=1 𝛷𝐼(𝒙)𝑢𝐼       (20) 

The shape function and its partial derivatives for node 𝑘𝑡ℎ can be expressed as   

   𝛷𝑘 = ∑𝑁
𝐼=1 𝑅𝐼𝜒𝐼𝑘

𝑎 + ∑𝑀
𝐽=1 𝑝𝐽𝜒𝐽𝑘

𝑏          (21) 

𝜕𝛷𝑘

𝜕𝑥
= ∑𝑁

𝐼=1
𝜕𝑅𝐼

𝜕𝑥
𝜒𝐼𝑘

𝑎 + ∑𝑀
𝐽=1

𝜕𝑝𝐽

𝜕𝑥
𝜒𝐽𝑘

𝑏 ;    
𝜕𝛷𝑘

𝜕𝑦
= ∑𝑁

𝐼=1
𝜕𝑅𝐼

𝜕𝑦
𝜒𝐼𝑘

𝑎 + ∑𝑀
𝐽=1

𝜕𝑝𝐽

𝜕𝑦
𝜒𝐽𝑘

𝑏       (22) 

To improve the computational aspect and ensure the proposed method are truly mesh-free 

procedure, the Stabilized Conforming Nodal Integration (SCNI) scheme introduced in J. S. Chen 

et al. (2021) is employed in this study. The idea of SCNI is that strains will be smoothed over the 

representative domain as follows 

  𝜀𝑖̃𝑗
ℎ (𝒙𝐽) =

1

𝑎𝐽
∫

𝛺𝐽

1

2
(𝑢𝑖,𝑗

ℎ + 𝑢𝑗,𝑖
ℎ )𝑑𝛺 =

1

2𝑎𝐽
∮

𝛤𝐽
(𝑢𝑖

ℎ𝑛𝑗 + 𝑢𝑗
ℎ𝑛𝑖)𝑑𝛺      (23) 

where 𝜀𝑖̃𝑗
ℎ  is the smoothed strains at node 𝐽; 𝑢𝑖 and 𝑢𝑗  are displacement components; 𝑎𝐽 and 

𝛤𝐽 are area and boundary of a representative domain 𝛺𝐽; 𝑛𝑖 and 𝑛𝑗  are outward normal of edges 

bounding domain 𝛺𝐽As shown in Figure 1. 
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Figure 1. Geometry definition of a nodal representative domain 

The smooth version of strains can be now expressed as   

  𝜀ℎ(𝒙𝐽) = [𝜀𝑥̃𝑥
ℎ (𝒙𝐽) 𝜀𝑦̃𝑦

ℎ (𝒙𝐽) 2𝜀𝑥̃𝑦
ℎ (𝒙𝐽)]

𝑇
= 𝑩̃𝒅                   (24) 

where 𝒅 denotes the displacement vector and 𝑩̃ is the displacement-strain matrix consisting 

of the smoothed derivatives of shape function 

        𝛷̃𝐼,𝛼(𝒙𝐽) =
1

𝑎𝐽
∮

𝛤𝐽
𝛷𝐼(𝒙𝐽)𝑛𝛼(𝒙)𝑑𝛤 =

1

2𝑎𝐽
∑𝑛𝑠

𝑘=1 (𝑛𝛼
𝑘 𝐿𝑘 + 𝑛𝛼

𝑘+1 𝐿𝑘+1)𝛷𝐼(𝒙𝐽
𝑘+1)      (25) 

where 𝛷̃ is the smoothed version of 𝛷; 𝑛𝑠 is the number of edges; 𝒙𝐽
𝑘 and 𝒙𝐽

𝑘+1 are the 

coordinates of the two endpoints of the boundary segment 𝛤𝐽
𝑘 having length 𝐿𝑘 and outward surface 

normal 𝑛𝑘.  

Similarly, the smoothed version of second-order derivatives of shape function can be 

calculated from the first-order ones as 

     
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               (26) 

with 𝛷𝐼,𝛼 and 𝛷𝐼,𝛽 are the first-order derivatives of shape function relating to variables 𝛼 and 𝛽. 

It is worth noting that the RPIM shape function possesses the Kronecker delta property, 

leading to the essential boundary conditions can be easily imposed in a similar way to the finite 

element method. Furthermore, using the stabilized shape function, the constraints in formulated 

problems are enforced at nodes, yielding the reduction of computational cost. 

4. RPIM discretisation of lower bound limit analysis 

The Airy stress function is approximated using the RPIM method as follows 

   𝜑(𝜎) = ∑ 𝛷𝐼(𝑥)𝜎𝐼
𝑁
𝐼=1           (27) 

where 𝛷𝐼(𝑥) and 𝜎𝐼 are RPIM shape function and nodal reflection of approximated 

function 𝜑(𝜎) at node 𝐼𝑡ℎ,  respectively. 
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The stress components at node 𝐼𝑡ℎ can be expressed by second-order derivatives of 𝜑(𝜎) as 
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     (28) 

where 𝛷̃𝐼,𝑥𝑥(𝑥), 𝛷̃𝐼,𝑦𝑦(𝑥) and 𝛷̃𝐼,𝑥𝑦(𝑥) are smoothed versions of second-order derivatives 

of the RPIM shape function. 

Note that stresses determined by equation (28) automatically satisfy equilibrium equation 

(3), as demonstrated in equations (4-6). 

It can be observed that the number of variables in the problem is kept to be minimum owing 

to three stress components (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦) are performed via only one nodal reflection 𝜎𝐼Reducing 

the computational cost significantly. 

 The stress field can be now presented as 

   𝜎ℎ(𝑥) = [𝜎𝑥𝑥
ℎ 𝜎𝑦𝑦

ℎ 𝜎𝑥𝑦
ℎ ]

𝑇
= 𝐶𝑠         (29) 

where 

 𝐶 = [

𝐶𝑥𝑥

𝐶𝑦𝑦

𝐶𝑥𝑦

] = [

𝛷̃1,𝑦𝑦 𝛷̃2,𝑦𝑦 ⋯ 𝛷̃𝑁,𝑦𝑦

𝛷̃1,𝑥𝑥 𝛷̃2,𝑥𝑥 ⋯ 𝛷̃𝑁,𝑥𝑥

𝛷̃1,𝑥𝑦 𝛷̃2,𝑥𝑦 ⋯ 𝛷̃𝑁,𝑥𝑦

] ;    s𝑇 = [𝜎1 𝜎2 ⋯ 𝜎𝑁]      (30) 

The approximated stress field must belong to the convex domain ℬ, for which the von 

Mises yield criterion is rewritten in terms of a sum of norms as follows 

ℬ ≡ {
ℒ𝑃𝑆 = {𝜌 ∈ ℝ3   ∣   𝜌1 ≥ ‖𝜌2→4‖𝐿

2 = √𝜌2
2 + 𝜌3

2 + 𝜌4
2} ,   for plane stress

ℒ𝑃𝐷 = {𝜌 ∈ ℝ3   ∣   𝜌1 ≥ ‖𝜌2→3‖𝐿
2 = √𝜌2

2 + 𝜌3
2} For plane strain

      (31) 

where the additional variables (𝜌1, 𝜌2, 𝜌3, 𝜌4) are given by 

  

𝜌1 = 𝜎𝑝

𝜌2→4 = [

𝜌2

𝜌3

𝜌4

]  =
1

2
[

2 0 0

−1 √3 0

0 0 2√3

]  𝐶𝑠, for plane stress

𝜌2→3 = [
𝜌2

𝜌3
] =

1

2
[
𝐶𝑥𝑥 −  𝐶𝑦𝑦

2 𝐶𝑥𝑦
] 𝑠, for plane strain

       (32) 

The optimization problem (8) can be now formulated as SOCP form as 

   

max

,       on 
s.

1,2,...,
t 

 p

t

k

t

k N

 

 

  

Cs          (33) 
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where 𝑁𝑝 is number of integration points. 

It is interesting to note that, using SCNI, the equilibrium equations in (3) and all constraints 

in (33) are fully satisfied everywhere in the problem domain, but in average-sense. Therefore, the 

solution obtained from (33) may not be guaranteed to represent a strict lower-bound on the exact 

value. However, the reliable approximation of actual collapse load multipliers can be achieved 

using a sufficiently fine nodal mesh. 

5. Numerical results 

In this section, several benchmark plane stress and plane strain problems governed by von 

Mises yield criterion are investigated to examine the computational effect of the proposed method. 

The shape parameter 𝛼𝑠 = 10−5and the radius of support domain 𝑅𝑠 = 3𝑑𝐼 are chosen for all 

problems. The resulting optimization problems are solved using Mosek optimization solver version 

9.0 integrated into the Matlab environment on a 2.8 GHz Intel Core i7 PC running Window 10. 

5.1. Double notched specimen in tension 

This example deals with a well-known problem in-plane strain, consisting of a rectangular 

plate having double cracks at boundaries and subjected to tension load, as shown in Figure 2(a). 

With the given data 𝑊 = 𝐿, the problem is considered in three cases: 𝑎 =
𝐿

3
, 𝑎 =

𝐿

2
, 𝑎 =

2𝐿

3
. Owing 

to the symmetry, the upper-right quarter of the plate, for which the dimensions and boundary 

conditions are illustrated in Figure 2(b), is modeled. The nodal discretization for the mesh of 169 

nodes and related representative domains created using Voronoi diagrams are also plotted in Figure (2c). 

 

(a)    Geometry, loading and dimensions 

  

(b) Computational domain and boundary conditions 
(c) Nodal discretization and representative 

domains 

Figure 2. Double notched specimen problem 
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 Table 1 presents the collapse load multipliers obtained using the proposed RPIM 

procedure, in which different types of polynomial basis functions are employed. The convergence 

analysis and comparison are also plotted in Figure 3. It can be observed that, with the use of 

equilibrium formulation, the limit load factors increase when increasing number of nodes or 

variables. Among four types of PBF used, the RPIM approximation obtained by combining radial 

basis function and cubic polynomial one results in the best accurate and stable solutions. The size 

of an optimization problem is reduced significantly owing to the combination of Airy stress 

function and SOCP. Consequently, the problem with thousand variables can be rapidly solved in 

a few seconds, as seen in Table 1. 

Table 1 

Double notched specimen: the convergence of limit load multipliers 

Model 

Number of nodes (Nvar) 

169 

(677) 

361 

(1445) 

625 

(2501) 

961 

(3845) 

1369 

(5477) 

𝑎 =
𝐿

3
 0.850 0.894 0.915 0.921 0.922 

CPU-time (s) < 1 < 1 < 1 < 1 1 

𝑎 =
𝐿

2
 1.066 1.109 1.118 1.128 1.131 

CPU-time (s) < 1 < 1 < 1 < 1 1 

𝑎 =
2𝐿

3
 1.303 1.346 1.366 1.374 1.381 

CPU-time (s) < 1 < 1 < 1 < 1 1 

Nvar is the number of variables in an optimization problem 

Source: Data analysis result of the research 

Table 2 

Double notched specimen: the comparison with other studies 

Author Approach 

Collapse load factors 

𝒂 =
𝑳

𝟑
 𝒂 =

𝑳

𝟐
 𝒂 =

𝟐𝑳

𝟑
 

Present method Static 0.922 1.131 1.381 

Krabbenhoft and Damkilde (2003) Static - 1.132 - 

Le et al. (2016), EFG-Airy Static 0.921 1.131 1.381 

Ho et al. (2016), iRBF Static - 1.127 - 

Le et al. (2010), CS-FEM Kinematic 0.926 1.137 1.384 

Le et al. (2012), EFG Kinematic  0.941 1.154  1.410 

Ho et al. (2016), iRBF Kinematic - 1.141 - 

Christiansen and Andersen (1999) Mixed formulation 0.926 1.136 1.388 

Andersen et al. (1998) Mixed formulation 0.927 1.137 1.389 

Source: Data analysis result of the research 
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 The problem has also been investigated in Krabbenhoft and Damkilde (2003), using static 

FEM, in Le et al. (2010) using kinematic CS-FEM, in Le et al. (2016) using equilibrium EFG 

formulation combined with Airy stress function, in Christiansen and Andersen (1999); Andersen 

et al. (1998) using mixed finite element formulation. The comparison of present solutions and 

previous ones are summarized in Table 2. Generally, present results are in good agreement with 

those available in other studies. From Table 2 and Figure 3, it can be observed that obtained 

collapse load factors are very close to ones reported in Le et al. (2016) using equilibrium EFG 

approach and Airy function, the relative errors for the cases of 
𝑎

𝐿
= [

1

3,
 

1

2,
 
2

3
] are 0.11%, 0% and 0%, 

respectively. However, it is worth noting that, with the use of RPIM approximation, in which the 

shape function satisfies Kronecker delta property, the matrices in formulated problems are spare; 

hence, the CPU-Time in this paper is less than those reported in Le et al. (2016) when using similar 

nodal discretization and number variables in resulting optimization problem. 

 

Figure 3. Double notched specimen: the convergence analysis with different values of 
𝑎

𝐿
  

(UB: Upper Bound, LB: Lower Bound) 

5.2. Thin plate with square cutout subjected to tension 

In this example, a plane stress thin plate with a rectangular cutout at the center subjected 

to a uniform tension load, as shown in Figure 4, is studied. Taking advantage of the symmetry, an 

only the upper-right quarter is modeled, see Figure (5a). The nodal discretization and 

representative domains are illustrated in Figure 5(b). 

The collapse load multipliers associated with different nodal distributions are reported in 

Table 3 and plotted in Figure 6. Table 4 shows the comparison to other studies using kinematic 

and static formulations. The relative errors of the present solution and other those are small (almost 
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less than 3%). The error of 6.64% compared with one reported in Belytschko and Hodge (1970) 

can be explained that the linear programming was used to solve the optimization problem in 

Belytschko and Hodge (1970); hence, the result is low accurate. It can be observed that the present 

lower bound collapse multiplier of 0.739 is higher (better) than ones of 0.693 in Belytschko and 

Hodge (1970), and in good agreement with available numerical ones in the literature. 
 

 

Figure 4. Square cutout plate 

 

  

(a) (b) 

    Figure 5. Square cutout plate: (a) Computational domain and boundary conditions,  

(b) Nodal discretization and representative domains 

Table 3 

Square cutout problem: Collapse load multipliers 

Nodes 60 160 308 540 792 1288 

Nvar 301 801 1541 2701 3961 6441 

𝜆−  (×
𝑝

𝜎𝑝
) 0.295 0.608 0.687 0.724 0.734 0.739 

CPU-times (s) < 1 < 1 < 1 < 1 1 2 

Nvar is the number of variables in an optimization problem 

Source: Data analysis result of the research 
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Figure 6. Square cutout problem: the convergence analysis 

Table 4 

Square cutout problem: The comparison with other studies 

Author Approach 
𝜆 (×

𝑝

𝜎𝑝
) 

Errors (%) 

Present method Static 0.739 - 

S. Chen et al. (2008), EFG Static 0.736 0.41 

Ho et al. (2016), iRBF Static 0.729 1.37 

Belytschko and Hodge (1970), FEM Static 0.693 6.64 

S. T. Zhou and Liu (2012), NEM-Laplace Kinematic 0.752 1.73 

S. T. Zhou and Liu (2012), NEM-Sibson Kinematic 0.753 1.86 

Pixin et al. (1991), FEM Kinematic 0.764 3.27 

Source: Data analysis result of the research 

6. Conclusions 

The present study has described an equilibrium mesh-free formulation based on stabilized 

radial point interpolation and Airy stress function. The truly mesh-free procedure is obtained 

owing to the use of the SCNI scheme, leading to the constraints in problems that only need to be 

enforced at scattered nodes. The stress field is performed via second derivatives of an 

approximated function, and the equilibrium conditions are satisfied automatically. By means of 

Airy function, SCNI and SOCP, the resulting optimization problems are kept at minimum size and 

solved rapidly. The good agreement of present solutions in comparison with those in other studies 

shows the computational efficiency of the proposed method. 
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