

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 3

Khmer printed character recognition using attention-based Seq2Seq network

Rina Buoy1*, Nguonly Taing1, Sovisal Chenda1, Sokchea Kor2

1Techo Startup Center, Phnom Penh, Cambodia
2Royal University of Phnom Penh, Phnom Penh, Cambodia

*Corresponding author: rinabuoy13@gmail.com

ARTICLE INFO ABSTRACT

DOI:10.46223/HCMCOUJS.

tech.en.12.1.2217.2022

Received: March 28th, 2022

Revised: April 09th, 2022

Accepted: April 15th, 2022

Keywords:

character recognition; deep

learning; Khmer; optical neural

network

This paper presents an end-to-end deep convolutional

recurrent neural network solution for Khmer Optical Character

Recognition (OCR) task. The proposed solution uses a sequence-

to-sequence (Seq2Seq) architecture with an attention mechanism.

The encoder extracts visual features from an input text-line image

via layers of convolutional blocks and a layer of Gated Recurrent

Units (GRU). The features are encoded in a single context vector

and a sequence of hidden states which are fed to the decoder for

decoding one character at a time until a special End-Of-Sentence

(EOS) token is reached. The attention mechanism allows the

decoder network to adaptively select relevant parts of the input

image while predicting a target character. The Seq2Seq Khmer

OCR network is trained on a large collection of computer-

generated text-line images for multiple common Khmer fonts.

Complex data augmentation is applied to both the train and

validation datasets. The proposed model’s performance

outperforms the state-of-art Tesseract OCR engine for the Khmer

language on the validation set of 6,400 augmented images by

achieving a Character Error Rate (CER) of 0.7% vs. 35.9%.

1. Introduction

One of the Artificial Intelligence (AI) paradigms is to develop a machine that can mimic

the ability of human recognition. In terms of visual perception and understanding text, the

computer is still at the infancy level compared with humans (Annanurov & Noor, 2018). To make

a text machine-readable, it can be either converted manually or digitally extracted by means of

Optical Character Recognition (OCR) from the digital image of the document (Memon, Sami,

Khan, & Uddin, 2020). OCR is the science of extracting analyzable and editable data from scanned

documents or images. The OCR technology has been evolving over the last 08 decades. Large tech

players mainly contributed to the early phase of OCR development. The recent advancement of

artificial intelligence, particularly deep learning, has allowed researchers from various spectrums to

devise OCR algorithms that can achieve higher accuracy levels (Memon et al., 2020). Although OCR

technology for English and other high-resource languages has been developed over the last 08 decades

(Memon et al., 2020), the early OCR work on the Khmer language was around the year 2005.

Khmer (KHM) is the official language of the kingdom of Cambodia. The Khmer script is

used in the writing system of Khmer and other minority languages such as Kuay, Tampuan, Jarai

Krung, Brao, and Kravet. Khmer language and writing system were hugely influenced by Pali and

4 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

Sanskrit in early history (Bahdanau, Cho, & Bengio, 2014; Buoy, Taing, & Kor, 2021; Sok, 2016).

Unlike Latin-based languages, the Khmer language has a complex writing system. One or two

consonants can be stacked below an initial consonant using the alternate form (aka Coeng - foot

in English) to form a consonant cluster (Bahdanau et al., 2014; Sok, 2016). Khmer writing also

uses diacritical signs which are placed above a consonant. Dependent vowels cannot stay alone by

themselves and must be attached to an initial consonant. Orthographically, a dependent vowel can

be placed to the left, right, above, below, or around a base consonant (Ding, Utiyama, & Sumita,

2018). Therefore, Khmer scripts require a complex rendering layout, which is not the case with

Latin-based writing systems. A complete Khmer OCR system needs to recognize all characters,

given the complexity of Khmer writing.

Khmer is a low-resource language in Natural Language Processing (NLP) context, and

research on Khmer OCR tasks is still limited, although OCR is one of the fundamental NLP tasks

with many practical applications. Therefore, a robust Khmer OCR is required. Recent advances in

artificial intelligence and specifically deep learning have made it possible to train OCR models in

an end-to-end fashion without complex pre-processing or post-processing.

Research works on Khmer OCR have primarily focused on using complex feature

extraction steps, traditional machine learning classifiers, and post-processing steps. Such

approaches are difficult to optimize simultaneously and do not yield an acceptable accuracy level.

Other solutions are not complete as they can predict only standalone characters instead of full

words, phrases, or sentences. Therefore, there requires an end-to-end solution to the Khmer OCR

task which can read a raw text-line image of any length and outputs editable text in a single forward

run. The solution to the Khmer OCR task should recognize texts with different fonts and in

different environments.

The primary objectives of this work are:

• To develop an end-to-end OCR pipeline for multi-font Khmer text recognition utilizing

a deep learning-based sequence-to-sequence model with an attention mechanism. An end-to-end

OCR integrates feature extraction, classification, and post-processing in a single network, which

can be optimized simultaneously.

• To achieve the state-of-art performance (SOTA) in Khmer text recognition.

2. Literature review

2.1. Khmer Optical Character Recognition (OCR)

Chey, Kumhom, and Chamnongthai (2005) did one of the early works in Khmer OCR. The

proposed method was a variant of instance-based classifiers. The authors used wavelet descriptors

to extract features (coefficients) from pre-processed images in the training set and built a template

for each character. For a given new input image, a set of wavelet coefficients was extracted and

matched against all the training templates. The input image was then assigned to the class with the

smallest Euclidean distance. The classifier could classify only images with a standalone character

and was not scale-invariant. The highest accuracy was 92.99% at 300 dpi resolution.

Sok and Taing (2014), Chey et al. (2005) applied the Support Vector Machine (SVM)

algorithm to recognize Khmer characters. The complete pipeline was composed of four steps -

character segmentation, feature extraction, classification, and character reassembling. The reported

character classification accuracy was about 98% for various font sizes. The system performance

was dependent on the character segmentation step, which relied on edge detection. The proposed

OCR system was, therefore, not applicable to noisy text-line images.

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 5

Meng and Morariu (2014) applied an artificial neural network in recognizing Khmer

characters. The approach is applied to standalone character recognition. The authors proposed two

steps recognition pipeline. An input image (20 by 20 pixels) was first passed into a self-organizing

network, which grouped the input image into one of the nine classes. Each class had one multi-

layer neural network, which classified the input image to one of 82 Khmer characters, including

consonants, vowels, and numbers. The average recognition rate on the train and test datasets was

65% and 30%, respectively.

Lenleng and Muaz (2015) from the PAN Localization Cambodia team proposed a complete

workflow for recognizing Khmer text. Similar to Sok and Taing (2014), Chey et al. (2005), the

four-step workflow included pre-processing, segmentation, recognition, and mapping. The pre-

processing step included line separation and character block segmentation. Blocks of characters

were then segmented into atomic shapes, namely: Main Body, Super-Script, SubScript, CCDown,

and CC (Complex Character). Discrete cosine transform was used to extract features from the

atomic shapes for the classification task. The recognized shapes were finally mapped to produce

valid Khmer text. The average recognition rate for all shapes was reported to be 96.34%. The

system performance was dependent on character separation, which used a vertical white space as

a delimiter. The proposed OCR system was, therefore, not applicable to noisy text-line images.

Valy, Verleysen, Chhun, and Burie (2017) proposed a character-level Convolution Neural

Network (CNN) classifier in recognizing ancient Khmer characters on palm-leaf manuscripts. The

proposed CNN architecture was applied to standalone character recognition and is composed of

03 convolutional blocks and a linear classifier. The classifier output a vector of 106 elements

representing character classes. The accuracy of the test set was reported at around 95.96.

Annanurov and Noor (2018) experimented with both multi-layer and convolutional neural

networks to recognize standalone Khmer consonants. A CNN-based model was compared against

Artificial Neural Network (ANN)-based classifier with a full feature set and an ANN-based

classifier with a reduced feature set. The CNN model achieved up to 94.85% average accuracy.

However, the model could recognize standalone Khmer consonants only.

Sokphyrum, Samak, and Sola (2019) fined tune a pre-trained Tesseract OCR engine for

Khmer Unicode and legacy Lemon fonts. Tesseract is an end-to-end multilingual OCR engine.

Tesseract uses deep convolutional recurrent neural network architecture with Connectionist

Temporal Classification (CTC) loss. Tesseract learns feature representation automatically via one

convolutional layer followed by multiple stacked recurrent neural networks (Liebl & Burghardt,

2020). Tesseract can recognize a text-line image. Sokphyrum et al. (2019) reported an accuracy of

90% on the fine-tuned fonts.

2.2. Seq2Seq Network and Attention

Although Deep Neural Networks (DNNs) are very good models in computer vision or

natural language processing, DNNs are not able to handle inputs and targets of variable lengths.

This limitation prevents DNNs from being applied to certain tasks, such as speech recognition and

machine translation, in which sequence lengths are not fixed (Sutskever, Vinyals, & Le, 2014).

Recurrent Neural Networks (RNNs), on the other hand, can encode an input sequence of

unknown length to produce a fixed-dimension representation of the input sequence. Thus,

Sutskever et al. (2014) proposed an RNN known as an encoder to encode the input sequence of

variable length to a fixed-dimension vector representation, commonly known as a context vector.

The context vector was passed to another RNN known as a decoder to extract the information and

generate the output sequence at any length. An encoder-decoder network, also known as Seq2Seq,

was applied to the English-French machine translation task. A BLEU score of 34.81 was achieved,

6 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

which was, at that time, the best result by neural machine translation. The authors made the

observation that the Long Short-Term Memory (LSTM) architecture performed robustly even on

long sequences, although the previous study suggested otherwise.

Bahdanau et al. (2014) suggested that using a single fixed-dimension context vector is a

bottleneck for the encoder-decoder network. To remove this bottleneck, the attention mechanism

was introduced to allow the decoder to selectively use only parts of the input sequence that are

useful for predicting a target word.

The key distinction between Sutskever et al. (2014) and Bahdanau et al. (2014) is that the

former proposed a single fixed-length context vector for the whole input sentence, while the latter

proposed to encode the input sequence as a sequence of hidden vectors on top of the context vector

and the decoder chooses a subset of these vectors adaptively via attention mechanism while

decoding the translation. The experimental results from Bahdanau et al. (2014) suggested that the

proposed approach outperformed the conventional encoder-decoder significantly on the English-

to-French translation task.

OCR task can be viewed as another machine translation task. The input to the OCR systems

is an input image of a text line with variable length. The output of the OCR systems is a character

sequence of variable length. Therefore, the solutions to machine translation tasks can also be

extended to OCR tasks.

Sahu and Sukhwani (2015) proposed an end-to-end encoder-decoder network for

recognizing printed text. Long Short-Term Memory (LSTM) networks were used in both encoder

and decoder. The label error rate of 0.84% was reported on the annotated English word images.

Safir, Ohi, Mridha, Monowar, and Hamid (2021) proposed an end-to-end convolutional

recurrent neural network with Connectionist Temporal Classification (CTC) loss for Bengali

handwritten words. Safir et al. (2021) experimented with various CNN feature extractors such as

DenseNet, Xception, NASNet, and MobileNet and different recurrent neural networks such as

LSTM and GRU. Safir et al. (2021) reported 0.091 Character Error Rate (CER) and 0.273 Word

Error Rate (WER) by using the DenseNet121 model with GRU recurrent layer.

In this work, we attempt to approach the Khmer OCR task by using an encoder-decoder

network. We propose an end-to-end, attention-based encoder-decoder network (Seq2Seq). The

encoder is a convolutional recurrent neural network, while the decoder is a recurrent neural

network followed by a linear classifier. During decoding, the attentive decoder uses an attention

mechanism to search for the relevant encoder outputs. Gated Recurrent Unit (GRU) is used in both

the decoder and encoder. The entire OCR network can read a text-line image of arbitrary length

and produces a character sequence of unknown length. Being an end-to-end solution, the proposed

solution does not need any pre-processing, feature extraction, or post-processing steps.

3. An end-to-end Khmer OCR network

We propose the end-to-end Khmer OCR model using a Seq2Seq (aka encoder-decoder) network

with an attention mechanism. The end-to-end OCR model does not require pre-processing steps such as

character separation and post-processing steps such as character mapping or reassembling.

The proposed Seq2Seq network takes a text-line input image via the encoder network. The

encoder network passes the encoded information via a context vector and a sequence of hidden

vectors to the decoder network to decode one character at a time until the End-Of-Sentence (EOS)

token is reached. There is no limit on the number of characters in the input text-line image that the

encoder can read and the decoder can produce. The attention mechanism allows the network

performs robustly even with an input image with a very long text line. The high-level architecture

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 7

of the end-to-end, attention-based Seq2Seq network for Khmer OCR is given in Figure 1. Figure

1 shows the decoding process of the second time step while the decoding process of the first time

step is being grayed out. Detailed description of the encoder, decoder and attention is provided in

the subsequent sections.

Figure 1. The proposed end-to-end, attention-based Seq2Seq network for Khmer OCR

3.1. Encoder

The encoder is composed of two parts: convolutional blocks and recurrent layers. As

illustrated in Figure 2, the role of the convolution blocks is to produce a sequence of feature maps

from a given input text-line image. A sequence of feature maps is proportional to the input image’s

width. The sequence of feature maps of T length is further fed to the bidirectional recurrent layers,

which are Gated Recurrent Units (GRU) in this case. The recurrent layers produce two context

vectors (i.e., last hidden states) which are backward, ℎ𝑇⃖ and forward, ℎ𝑇 . Both context vectors are

concatenated to produce a single context vector, ℎ𝑇 which is fed to a fully connected layer and

followed by an arc-tan activation function. At each step in the sequence, the encoder also outputs

a concatenated hidden vector. Therefore, the encoder outputs a transformed, squashed context

vector, 𝑧, as well as a sequence of concatenated hidden vectors, 𝐻 = {ℎ1, ℎ2, … , ℎ𝑇}. The decoder

takes 𝑧 as its initial state, so and the hidden states, H.

The detailed specification of the encoder is given in Figure 3.

3.2. Attention

At each decoding step i, the decoder needs to search the relevant information from the

encoder’s hidden states (i.e., vectors) adaptively. This can be done by calculating a weighted

average context vector, ci, over the encoder’s hidden states (Bahdanau et al., 2014).

𝑐𝑖 = ∑ 𝛼𝑖𝑗 ∗ ℎ𝑗

𝑇𝑥

𝑗=1

(1)

8 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

where:

Figure 2. The encoder

• Tx is the length of the input sequence;

• ci is the weighted average context vector at decoding step I;

• αij is the attention weight for the encoder’s hidden state at time j and the decoder’s

previous hidden state at the time I;

• hj is the encoder’s hidden state at time j.

αij can be computed using the below formula (Bahdanau, Cho, & Bengio, 2014).

𝛼𝑖𝑗 =
𝑒𝑒𝑖𝑗

∑ 𝑒𝑒𝑖𝑘
𝑇𝑥
𝑘=1

 (2)

𝑒𝑖𝑗 = 𝑣𝑎
𝑇tanh (𝑊𝑎𝑆𝑖−1 + 𝑈

𝑎
ℎ𝑗) (3)

where:

• va, Wa, and Ua are weight matrices;

• si−1 is the decoder’s previous hidden state;

The graphical illustration of attention during decoding at a time step, t is given in Figure 4.

3.3. Decoder network

The decoder network is a single-layer GRU network followed by a linear classifier. The

inputs to the GRU network are:

• d(yt): the previous decoded target that is one-hot encoded. For t = 1, y0 is a special start-

of-sentence (SOS) token;

• st−1: the decoder’s previous hidden state;

• ct: the weighted average context vector at decoding step, t.

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 9

Figure 3. The encoder architecture

d(yt) and ct are concatenated as a single input vector to the GRU layer. Together with the

previous hidden state, 𝑠𝑡−1 the GRU layer produces a new hidden state, 𝑠𝑡.

𝑠𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝐺𝑅𝑈([𝑑(𝑦𝑡), 𝑐𝑡], 𝑠𝑡−1) (4)

Next, st, d(yt), and ct are concatenated as a single input vector to the linear classifier to

predict the target, yt+1.

𝑦𝑡+1 = 𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑟([𝑠𝑡, 𝑐𝑡, 𝑑(𝑦𝑡)]) (5)

The decoding process is repeated until 𝑦𝑡+1 is a special end-of-sentence (EOS) token.

The decoder’s GRU layer has a hidden dimension of 512 while 𝑦𝑡+1 is a vector of 117

elements, corresponding to the number of unique Khmer characters which is given in Figure 5.

3.4. Synthetic dataset generation

The dataset is generated by using the text2image tool developed by the Tesseract team for

multiple common Khmer fonts. The rendered images are augmented with speckle noise,

dilation/erosion, and rotation. The dataset consists of 03 million words, phrases, or sentences. The

images for different fonts for the same word are given in Figure 6.

10 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

Figure 4. Graphical illustration of attention during decoding

(modified from Annanurov and Noor (2018))

Figure 5. Khmer characters

Figure 6. Different images of a Khmer word for the different fonts

The text2image generates images with variable width and height, depending on the word

or phrase or sentence length and the presence of subscript consonants, vowels, and diacritics.

Therefore, the input images are scaled to a common height of 32 pixels, which gives the final

height of 01 after the convolutional layers in the encoder network. According to Liebl and

Burghardt (2020), Tesseract uses a common height of 48 pixels.

3.5. Data augmentation

The role of data augmentation is to improve model robustness by guiding the model to

extract relevant text features and ignore noises (Namysl & Konya, 2019). The generated text-line

images are subject to standard text augmentation techniques, which include Gaussian blurring,

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 11

dilation, erosion, and blob noise. In addition, fibrous and multi-scale noisy background is also

randomly added. Two augmented images can also be randomly concatenated. A probability of

50% is assigned to each augmentation method. Each input image has a 50% chance of being

augmented with an augmentation technique. Therefore, more than one augmentation technique can

be applied to one input image. Some examples of augmented images are illustrated in Figure 7.

For the training images, data augmentation is applied dynamically on each batch. That

means a training image can be augmented more than one time. The validation images, however,

are augmented only once. This is to make sure that the same augmented validation images are used

for evaluation purposes.

Figure 7. Some examples of augmented images

3.6. Overall workflow

The overall workflow is given in Figure 8. It starts with a text corpus which is a collection

of numbers, words, phrases, or sentences. The synthetic images are generated from the text corpus.

The generated images are split into two sets – train and validation. One-time data augmentation is

applied to the validation set. The train set is used to train the model, and batch-level data

augmentation is applied dynamically. The trained model is then evaluated on the validation set and

benchmarked against Tesseract-OCR for Khmer on the same validation set.

Figure 8. The overall workflow

12 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

4. Model training and results

4.1. Training configuration

The model has 9,938,222 trainable parameters. The model’s training configurations are

given below:

• Epoch: 150;

• Batch size: 64 images;

• Optimizer: Adam;

• Learning rate: 1e-6;

• Loss function: Cross-entropy loss;

• Teacher forcing factor: 1;

• Framework: PyTorch;

• GPU: 1 GPU (Tesla P100-PCIE-16GB on Google Colab Pro).

Due to the restricted run-time usage (~12 hours) by Google Colab, the training had to be

restarted from the last checkpoint multiple times.

4.2. Character Rate Error

To measure model performance on the validation set, which consists of 6,400 augmented

images, a Character Rate Error (CER) is used. CER is defined as below:

𝐶𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 (6)

Where:

• S: number of substitutions;

• D: number of deletions;

• I: number of insertions;

• N: number of reference characters The nominator in the CER formula is basically the

Levenshtein distance between two strings.

4.3. Model evaluation

The model’s CER on the validation set of 6,400 images is 0.7%. Some samples of the

augmented validation images are given in Figure 9, which show combined effects of dilation,

distortion, noisy background, and noisy blobs.

For evaluation, the pre-trained Tesseract-OCR for Khmer is used to extract texts from the

validation images without further fine-tuning. Tesseract 4.00, which uses both convolutional and

recurrent neural networks, is used for benchmarking.

The calculated CER of Tesseract-OCR is 35.9%. Namysl and Konya (2019) reported a

similar CER by Tesseract-OCR on the highly augmented synthetic images. A more detailed error

analysis will be given in the next section.

To assess the effect of data augmentation on the model robustness, the validation set of

augmented images is de-augmented. This is illustrated in Figure 10. Then, the CERs are computed

for both the proposed solution and Tesseract-OCR. The calculated CERs for the proposed solution

and Tesseract-OCR are 0.24% and 1.6%. This suggests perhaps, not enough augmentation was

applied for training Tesseract-OCR, although it was otherwise claimed by the Tesseract-OCR team.

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 13

4.4. Visualizing attention heatmap

Attention is one of the major components of the proposed architecture. With attention, the

decoder can scan through hidden vectors from the encoder and decide which part of the information

to use when outputting a character by adaptively computing the attention weights. Attention maps

along with the predicted texts for some example input images are given in Figure 11 and Figure 12.

Figure 9. Some samples of the augmented

validation images

Figure 10. Some samples of the de-augmented

validation images

Figure 11. Attention maps along the predicted

texts for some input images

Figure 12. Attention maps along with the

predicted texts for some input images

5. Discussion

The histograms of Levenshtein distances on the validation set for the trained model and

Tesseract-OCR are given in Figure 13 and Figure 14, respectively. A few conclusions can be made:

• Maximum Levenshtein distance by Tesseract-OCR is three times higher than that of the

proposed model;

14 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

• For Tesseract-OCR, the error is rather uniformly distributed between 10 and 60

(Levenshtein distance), while the for the proposed, the error distribution is right-skewed with most

points located between 0 and 5;

• For Tesseract-OCR, the mean error is about 9.8, while for the proposed model, the mean

error is about 0.2;

• The proposed model is more robust to complex data augmentation than Tesseract-OCR.

The same observation was also made by Namysl and Konya (2019).

5.1. The model’s performance in some extreme cases

To understand the model’s performance better, we identified the images with the largest

Levenshtein distances. A few identified images are illustrated in Figure 15 along with the predicted

texts. Figure 15 shows that the recognition performance of the proposed model drops as text quality

is significantly reduced due to the combined effects of augmentations. Some characters in Figure

15 are not clearly distinguishable even to human eyes.

Figure 13. The model’s histogram of Levenshtein distances on the validation set

Figure 14. Tesseract-OCR’s histogram of Levenshtein distances on the validation set

 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16 15

Figure 15. The proposed model’s predictions on some extreme cases

6. Conclusion

This work presents an end-to-end Khmer OCR system that utilizes an encoder-decoder

(Seq2Seq) network. The encoder is composed of layers of convolutional blocks and layers of GRU

units. The decoder consists of a layer of GRU units and a linear classifier. The decoder uses an

attention mechanism to adaptively select parts of the encoder’s outputs that are relevant for

predicting the target character. The proposed model has trained a collection of synthetic text-line

images generated by using an open-source text2image tool with degrading effects. Data

augmentation is further applied on both train and validation datasets to improve the model’s

robustness. The experiment results suggest that the proposed solution outperforms the current

state-of-art Tesseract-OCR engine for Khmer by achieving a CER of 0.7% vs. 35.9% on the

validation set of 6,400 augmented images. A robust OCR system must be able to recognize text in

the presence of text deformations and noisy backgrounds. The system must also be font-invariant.

In the future, we would like to train the model on more complex, augmented text-line images, and

additional Khmer fonts are included.

References

Annanurov, B., & Noor, N. M. (2018). Khmer handwritten text recognition with convolution

neural networks. ARPN Journal of Engineering and Applied Sciences, 13(22), 8828-8833.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. Retrieved October 10, 2021, from https://arxiv.org/pdf/1409.0473.pdf

Buoy, R., Taing, N., & Kor, S. (2020). Khmer word segmentation using BiLSTM networks. Paper

presented at the 4th Regional Conference on OCR and NLP for ASEAN Languages (ONA

2020), Phnom Penh, Cambodia.

Buoy, R., Taing, N., & Kor, S. (2021). Joint Khmer word segmentation and part-of-speech tagging

using deep learning. Retrieved October 10, 2021, from https://arxiv.org/ftp/arxiv/

papers/2103/2103.16801.pdf

Chey, C., Kumhom, P., & Chamnongthai, K. (2005). Khmer printed character recognition by using

wavelet descriptors. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 14(3), 337-350.

16 Rina Buoy et al. HCMCOUJS-Engineering and Technology, 12(1), 3-16

Ding, C., Utiyama, M., & Sumita, E. (2018). NOVA: A feasible and flexible annotation system

for joint tokenization and part-of-speech tagging. ACM Transactions on Asian and Low-

Resource Language Information Processing, 18(2). doi:10.1145/3276773

Lenleng, I., & Muaz, A. (2015). Khmer Optical Character Recognition (OCR). PAN Localization

Cambodia, 1.

Liebl, B., & Burghardt, M. (2020). On the accuracy of CRNNs for line-based OCR: A multi-

parameter evaluation. Retrieved October 10, 2021, from https://arxiv.org/pdf/2008.02777.pdf

Memon, J., Sami, M., Khan, R. A., & Uddin, M. (2020). Handwritten Optical Character

Recognition (OCR): A comprehensive Systematic Literature Review (SLR). IEEE Access,

8, 142642-142668.

Meng, H., & Morariu, D. (2014). Khmer character recognition using artificial neural network.

Retrieved October 10, 2021, from http://www.apsipa.org/proceedings_2014/Data/paper/1408.pdf

Namysl, M., & Konya, I. (2019). Efficient, lexicon-free OCR using deep learning. Paper presented

at the 2019 International Conference on Document Analysis and Recognition (ICDAR),

Sydney, Australia.

Safir, F. B., Ohi, A. Q., Mridha, M. F., Monowar, M. M., & Hamid, M. A. (2021). End-to-end

optical character recognition for bengali handwritten words. Retrieved October 10, 2021,

from https://arxiv.org/pdf/2105.04020.pdf

Sahu, D. K., & Sukhwani, M. (2015). Sequence to sequence learning for optical character

recognition. Retrieved October 10, 2021, from https://arxiv.org/pdf/1511.04176.pdf

Sok, M. (2016). Phonological principles and automatic phonemic and phonetic transcription of

khmer words. Chiang Mai, Thailand: Payap University.

Sok, P., & Taing, N. (2014). Support Vectir Machine(SVM)-based classifier for Khmer character-

set recognition. Retrieved October 10, 2021, from http://www.apsipa.org/

proceedings_2014/data/paper/1407.pdf

Sokphyrum, K., Samak, S., & Sola, J. (2019). Khmer OCR finte tune engine for Unicode and

legacy fonts using Tesseract 4.0 with Deep Neural Network. Optical character recognition

for complex scripts and Natural language processing for ASEAN Languages, 1.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. Retrieved October 10, 2021, from https://proceedings.neurips.cc/

paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Valy, D., Verleysen, M., Chhun, S., & Burie, J.-C. (2017). A new Khmer palm leaf manuscript

dataset for document analysis and recognition: SleukRith set. Proceedings of the 4th

International Workshop on Historical Document Imaging and Processing, 1-6.

doi:10.1145/3151509.3151510

Creative Commons Attribution-NonCommercial 4.0 International License.

