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This paper presents an end-to-end deep convolutional 

recurrent neural network solution for Khmer Optical Character 

Recognition (OCR) task. The proposed solution uses a sequence-

to-sequence (Seq2Seq) architecture with an attention mechanism. 

The encoder extracts visual features from an input text-line image 

via layers of convolutional blocks and a layer of Gated Recurrent 

Units (GRU). The features are encoded in a single context vector 

and a sequence of hidden states which are fed to the decoder for 

decoding one character at a time until a special End-Of-Sentence 

(EOS) token is reached. The attention mechanism allows the 

decoder network to adaptively select relevant parts of the input 

image while predicting a target character. The Seq2Seq Khmer 

OCR network is trained on a large collection of computer-

generated text-line images for multiple common Khmer fonts. 

Complex data augmentation is applied to both the train and 

validation datasets. The proposed model’s performance 

outperforms the state-of-art Tesseract OCR engine for the Khmer 

language on the validation set of 6,400 augmented images by 

achieving a Character Error Rate (CER) of 0.7% vs. 35.9%.  

1. Introduction 

One of the Artificial Intelligence (AI) paradigms is to develop a machine that can mimic 

the ability of human recognition. In terms of visual perception and understanding text, the 

computer is still at the infancy level compared with humans (Annanurov & Noor, 2018). To make 

a text machine-readable, it can be either converted manually or digitally extracted by means of 

Optical Character Recognition (OCR) from the digital image of the document (Memon, Sami, 

Khan, & Uddin, 2020). OCR is the science of extracting analyzable and editable data from scanned 

documents or images. The OCR technology has been evolving over the last 08 decades. Large tech 

players mainly contributed to the early phase of OCR development. The recent advancement of 

artificial intelligence, particularly deep learning, has allowed researchers from various spectrums to 

devise OCR algorithms that can achieve higher accuracy levels (Memon et al., 2020). Although OCR 

technology for English and other high-resource languages has been developed over the last 08 decades 

(Memon et al., 2020), the early OCR work on the Khmer language was around the year 2005. 

Khmer (KHM) is the official language of the kingdom of Cambodia. The Khmer script is 

used in the writing system of Khmer and other minority languages such as Kuay, Tampuan, Jarai 

Krung, Brao, and Kravet. Khmer language and writing system were hugely influenced by Pali and 
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Sanskrit in early history (Bahdanau, Cho, & Bengio, 2014; Buoy, Taing, & Kor, 2021; Sok, 2016). 

Unlike Latin-based languages, the Khmer language has a complex writing system. One or two 

consonants can be stacked below an initial consonant using the alternate form (aka Coeng - foot 

in English) to form a consonant cluster (Bahdanau et al., 2014; Sok, 2016). Khmer writing also 

uses diacritical signs which are placed above a consonant. Dependent vowels cannot stay alone by 

themselves and must be attached to an initial consonant. Orthographically, a dependent vowel can 

be placed to the left, right, above, below, or around a base consonant (Ding, Utiyama, & Sumita, 

2018). Therefore, Khmer scripts require a complex rendering layout, which is not the case with 

Latin-based writing systems. A complete Khmer OCR system needs to recognize all characters, 

given the complexity of Khmer writing. 

Khmer is a low-resource language in Natural Language Processing (NLP) context, and 

research on Khmer OCR tasks is still limited, although OCR is one of the fundamental NLP tasks 

with many practical applications. Therefore, a robust Khmer OCR is required. Recent advances in 

artificial intelligence and specifically deep learning have made it possible to train OCR models in 

an end-to-end fashion without complex pre-processing or post-processing. 

Research works on Khmer OCR have primarily focused on using complex feature 

extraction steps, traditional machine learning classifiers, and post-processing steps. Such 

approaches are difficult to optimize simultaneously and do not yield an acceptable accuracy level. 

Other solutions are not complete as they can predict only standalone characters instead of full 

words, phrases, or sentences. Therefore, there requires an end-to-end solution to the Khmer OCR 

task which can read a raw text-line image of any length and outputs editable text in a single forward 

run. The solution to the Khmer OCR task should recognize texts with different fonts and in 

different environments. 

The primary objectives of this work are: 

• To develop an end-to-end OCR pipeline for multi-font Khmer text recognition utilizing 

a deep learning-based sequence-to-sequence model with an attention mechanism. An end-to-end 

OCR integrates feature extraction, classification, and post-processing in a single network, which 

can be optimized simultaneously. 

• To achieve the state-of-art performance (SOTA) in Khmer text recognition. 

2. Literature review 

2.1. Khmer Optical Character Recognition (OCR) 

Chey, Kumhom, and Chamnongthai (2005) did one of the early works in Khmer OCR. The 

proposed method was a variant of instance-based classifiers. The authors used wavelet descriptors 

to extract features (coefficients) from pre-processed images in the training set and built a template 

for each character. For a given new input image, a set of wavelet coefficients was extracted and 

matched against all the training templates. The input image was then assigned to the class with the 

smallest Euclidean distance. The classifier could classify only images with a standalone character 

and was not scale-invariant. The highest accuracy was 92.99% at 300 dpi resolution. 

Sok and Taing (2014), Chey et al. (2005) applied the Support Vector Machine (SVM) 

algorithm to recognize Khmer characters. The complete pipeline was composed of four steps - 

character segmentation, feature extraction, classification, and character reassembling. The reported 

character classification accuracy was about 98% for various font sizes. The system performance 

was dependent on the character segmentation step, which relied on edge detection. The proposed 

OCR system was, therefore, not applicable to noisy text-line images. 
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Meng and Morariu (2014) applied an artificial neural network in recognizing Khmer 

characters. The approach is applied to standalone character recognition. The authors proposed two 

steps recognition pipeline. An input image (20 by 20 pixels) was first passed into a self-organizing 

network, which grouped the input image into one of the nine classes. Each class had one multi-

layer neural network, which classified the input image to one of 82 Khmer characters, including 

consonants, vowels, and numbers. The average recognition rate on the train and test datasets was 

65% and 30%, respectively. 

Lenleng and Muaz (2015) from the PAN Localization Cambodia team proposed a complete 

workflow for recognizing Khmer text. Similar to Sok and Taing (2014), Chey et al. (2005), the 

four-step workflow included pre-processing, segmentation, recognition, and mapping. The pre-

processing step included line separation and character block segmentation. Blocks of characters 

were then segmented into atomic shapes, namely: Main Body, Super-Script, SubScript, CCDown, 

and CC (Complex Character). Discrete cosine transform was used to extract features from the 

atomic shapes for the classification task. The recognized shapes were finally mapped to produce 

valid Khmer text. The average recognition rate for all shapes was reported to be 96.34%. The 

system performance was dependent on character separation, which used a vertical white space as 

a delimiter. The proposed OCR system was, therefore, not applicable to noisy text-line images. 

Valy, Verleysen, Chhun, and Burie (2017) proposed a character-level Convolution Neural 

Network (CNN) classifier in recognizing ancient Khmer characters on palm-leaf manuscripts. The 

proposed CNN architecture was applied to standalone character recognition and is composed of 

03 convolutional blocks and a linear classifier. The classifier output a vector of 106 elements 

representing character classes. The accuracy of the test set was reported at around 95.96. 

Annanurov and Noor (2018) experimented with both multi-layer and convolutional neural 

networks to recognize standalone Khmer consonants. A CNN-based model was compared against 

Artificial Neural Network (ANN)-based classifier with a full feature set and an ANN-based 

classifier with a reduced feature set. The CNN model achieved up to 94.85% average accuracy. 

However, the model could recognize standalone Khmer consonants only. 

Sokphyrum, Samak, and Sola (2019) fined tune a pre-trained Tesseract OCR engine for 

Khmer Unicode and legacy Lemon fonts. Tesseract is an end-to-end multilingual OCR engine. 

Tesseract uses deep convolutional recurrent neural network architecture with Connectionist 

Temporal Classification (CTC) loss. Tesseract learns feature representation automatically via one 

convolutional layer followed by multiple stacked recurrent neural networks (Liebl & Burghardt, 

2020). Tesseract can recognize a text-line image. Sokphyrum et al. (2019) reported an accuracy of 

90% on the fine-tuned fonts. 

2.2. Seq2Seq Network and Attention 

Although Deep Neural Networks (DNNs) are very good models in computer vision or 

natural language processing, DNNs are not able to handle inputs and targets of variable lengths. 

This limitation prevents DNNs from being applied to certain tasks, such as speech recognition and 

machine translation, in which sequence lengths are not fixed (Sutskever, Vinyals, & Le, 2014). 

Recurrent Neural Networks (RNNs), on the other hand, can encode an input sequence of 

unknown length to produce a fixed-dimension representation of the input sequence. Thus, 

Sutskever et al. (2014) proposed an RNN known as an encoder to encode the input sequence of 

variable length to a fixed-dimension vector representation, commonly known as a context vector. 

The context vector was passed to another RNN known as a decoder to extract the information and 

generate the output sequence at any length. An encoder-decoder network, also known as Seq2Seq, 

was applied to the English-French machine translation task. A BLEU score of 34.81 was achieved, 
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which was, at that time, the best result by neural machine translation. The authors made the 

observation that the Long Short-Term Memory (LSTM) architecture performed robustly even on 

long sequences, although the previous study suggested otherwise. 

Bahdanau et al. (2014) suggested that using a single fixed-dimension context vector is a 

bottleneck for the encoder-decoder network. To remove this bottleneck, the attention mechanism 

was introduced to allow the decoder to selectively use only parts of the input sequence that are 

useful for predicting a target word. 

The key distinction between Sutskever et al. (2014) and Bahdanau et al. (2014) is that the 

former proposed a single fixed-length context vector for the whole input sentence, while the latter 

proposed to encode the input sequence as a sequence of hidden vectors on top of the context vector 

and the decoder chooses a subset of these vectors adaptively via attention mechanism while 

decoding the translation. The experimental results from Bahdanau et al. (2014) suggested that the 

proposed approach outperformed the conventional encoder-decoder significantly on the English-

to-French translation task. 

OCR task can be viewed as another machine translation task. The input to the OCR systems 

is an input image of a text line with variable length. The output of the OCR systems is a character 

sequence of variable length. Therefore, the solutions to machine translation tasks can also be 

extended to OCR tasks. 

Sahu and Sukhwani (2015) proposed an end-to-end encoder-decoder network for 

recognizing printed text. Long Short-Term Memory (LSTM) networks were used in both encoder 

and decoder. The label error rate of 0.84% was reported on the annotated English word images. 

Safir, Ohi, Mridha, Monowar, and Hamid (2021) proposed an end-to-end convolutional 

recurrent neural network with Connectionist Temporal Classification (CTC) loss for Bengali 

handwritten words. Safir et al. (2021) experimented with various CNN feature extractors such as 

DenseNet, Xception, NASNet, and MobileNet and different recurrent neural networks such as 

LSTM and GRU. Safir et al. (2021) reported 0.091 Character Error Rate (CER) and 0.273 Word 

Error Rate (WER) by using the DenseNet121 model with GRU recurrent layer. 

In this work, we attempt to approach the Khmer OCR task by using an encoder-decoder 

network. We propose an end-to-end, attention-based encoder-decoder network (Seq2Seq). The 

encoder is a convolutional recurrent neural network, while the decoder is a recurrent neural 

network followed by a linear classifier. During decoding, the attentive decoder uses an attention 

mechanism to search for the relevant encoder outputs. Gated Recurrent Unit (GRU) is used in both 

the decoder and encoder. The entire OCR network can read a text-line image of arbitrary length 

and produces a character sequence of unknown length. Being an end-to-end solution, the proposed 

solution does not need any pre-processing, feature extraction, or post-processing steps. 

3. An end-to-end Khmer OCR network 

We propose the end-to-end Khmer OCR model using a Seq2Seq (aka encoder-decoder) network 

with an attention mechanism. The end-to-end OCR model does not require pre-processing steps such as 

character separation and post-processing steps such as character mapping or reassembling. 

The proposed Seq2Seq network takes a text-line input image via the encoder network. The 

encoder network passes the encoded information via a context vector and a sequence of hidden 

vectors to the decoder network to decode one character at a time until the End-Of-Sentence (EOS) 

token is reached. There is no limit on the number of characters in the input text-line image that the 

encoder can read and the decoder can produce. The attention mechanism allows the network 

performs robustly even with an input image with a very long text line. The high-level architecture 
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of the end-to-end, attention-based Seq2Seq network for Khmer OCR is given in Figure 1. Figure 

1 shows the decoding process of the second time step while the decoding process of the first time 

step is being grayed out. Detailed description of the encoder, decoder and attention is provided in 

the subsequent sections. 

 

Figure 1. The proposed end-to-end, attention-based Seq2Seq network for Khmer OCR 

3.1. Encoder 

The encoder is composed of two parts: convolutional blocks and recurrent layers. As 

illustrated in Figure 2, the role of the convolution blocks is to produce a sequence of feature maps 

from a given input text-line image. A sequence of feature maps is proportional to the input image’s 

width. The sequence of feature maps of T length is further fed to the bidirectional recurrent layers, 

which are Gated Recurrent Units (GRU) in this case. The recurrent layers produce two context 

vectors (i.e., last hidden states) which are backward, ℎ𝑇⃖  and forward, ℎ𝑇  . Both context vectors are 

concatenated to produce a single context vector, ℎ𝑇  which is fed to a fully connected layer and 

followed by an arc-tan activation function. At each step in the sequence, the encoder also outputs 

a concatenated hidden vector. Therefore, the encoder outputs a transformed, squashed context 

vector, 𝑧, as well as a sequence of concatenated hidden vectors, 𝐻 = {ℎ1, ℎ2, … , ℎ𝑇}. The decoder 

takes 𝑧 as its initial state, so and the hidden states, H. 

The detailed specification of the encoder is given in Figure 3. 

3.2. Attention 

At each decoding step i, the decoder needs to search the relevant information from the 

encoder’s hidden states (i.e., vectors) adaptively. This can be done by calculating a weighted 

average context vector, ci, over the encoder’s hidden states (Bahdanau et al., 2014). 

𝑐𝑖 = ∑ 𝛼𝑖𝑗 ∗ ℎ𝑗

𝑇𝑥

𝑗=1

 

  

(1) 
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where: 

 

Figure 2. The encoder 

• Tx is the length of the input sequence; 

• ci is the weighted average context vector at decoding step I; 

• αij is the attention weight for the encoder’s hidden state at time j and the decoder’s 

previous hidden state at the time I; 

• hj is the encoder’s hidden state at time j. 

αij can be computed using the below formula (Bahdanau, Cho, & Bengio, 2014). 

𝛼𝑖𝑗 =
𝑒𝑒𝑖𝑗

∑ 𝑒𝑒𝑖𝑘
𝑇𝑥
𝑘=1

                                                                         (2) 

𝑒𝑖𝑗 = 𝑣𝑎
𝑇tanh (𝑊𝑎𝑆𝑖−1 + 𝑈

𝑎
ℎ𝑗)                                                            (3) 

where: 

• va, Wa, and Ua are weight matrices; 

• si−1 is the decoder’s previous hidden state; 

The graphical illustration of attention during decoding at a time step, t is given in Figure 4. 

3.3. Decoder network 

The decoder network is a single-layer GRU network followed by a linear classifier. The 

inputs to the GRU network are: 

• d(yt): the previous decoded target that is one-hot encoded. For t = 1, y0 is a special start-

of-sentence (SOS) token; 

• st−1: the decoder’s previous hidden state; 

• ct: the weighted average context vector at decoding step, t. 
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Figure 3. The encoder architecture 

d(yt) and ct are concatenated as a single input vector to the GRU layer. Together with the 

previous hidden state, 𝑠𝑡−1 the GRU layer produces a new hidden state, 𝑠𝑡. 

𝑠𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝐺𝑅𝑈([𝑑(𝑦𝑡), 𝑐𝑡], 𝑠𝑡−1)                                                      (4) 

Next, st, d(yt), and ct are concatenated as a single input vector to the linear classifier to 

predict the target, yt+1. 

𝑦𝑡+1 = 𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑟([𝑠𝑡, 𝑐𝑡, 𝑑(𝑦𝑡)])                                              (5) 

The decoding process is repeated until 𝑦𝑡+1 is a special end-of-sentence (EOS) token. 

The decoder’s GRU layer has a hidden dimension of 512 while 𝑦𝑡+1 is a vector of 117 

elements, corresponding to the number of unique Khmer characters which is given in Figure 5. 

3.4. Synthetic dataset generation 

The dataset is generated by using the text2image tool developed by the Tesseract team for 

multiple common Khmer fonts. The rendered images are augmented with speckle noise, 

dilation/erosion, and rotation. The dataset consists of 03 million words, phrases, or sentences. The 

images for different fonts for the same word are given in Figure 6. 
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Figure 4. Graphical illustration of attention during decoding  

(modified from Annanurov and Noor (2018)) 

 

Figure 5. Khmer characters 

 

Figure 6. Different images of a Khmer word for the different fonts 

The text2image generates images with variable width and height, depending on the word 

or phrase or sentence length and the presence of subscript consonants, vowels, and diacritics. 

Therefore, the input images are scaled to a common height of 32 pixels, which gives the final 

height of 01 after the convolutional layers in the encoder network. According to Liebl and 

Burghardt (2020), Tesseract uses a common height of 48 pixels. 

3.5. Data augmentation 

The role of data augmentation is to improve model robustness by guiding the model to 

extract relevant text features and ignore noises (Namysl & Konya, 2019). The generated text-line 

images are subject to standard text augmentation techniques, which include Gaussian blurring, 
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dilation, erosion, and blob noise. In addition, fibrous and multi-scale noisy background is also 

randomly added. Two augmented images can also be randomly concatenated. A probability of 

50% is assigned to each augmentation method. Each input image has a 50% chance of being 

augmented with an augmentation technique. Therefore, more than one augmentation technique can 

be applied to one input image. Some examples of augmented images are illustrated in Figure 7. 

For the training images, data augmentation is applied dynamically on each batch. That 

means a training image can be augmented more than one time. The validation images, however, 

are augmented only once. This is to make sure that the same augmented validation images are used 

for evaluation purposes. 

 

Figure 7. Some examples of augmented images 

3.6. Overall workflow 

The overall workflow is given in Figure 8. It starts with a text corpus which is a collection 

of numbers, words, phrases, or sentences. The synthetic images are generated from the text corpus. 

The generated images are split into two sets – train and validation. One-time data augmentation is 

applied to the validation set. The train set is used to train the model, and batch-level data 

augmentation is applied dynamically. The trained model is then evaluated on the validation set and 

benchmarked against Tesseract-OCR for Khmer on the same validation set. 

 

Figure 8. The overall workflow 
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4. Model training and results 

4.1. Training configuration 

The model has 9,938,222 trainable parameters. The model’s training configurations are 

given below: 

• Epoch: 150; 

• Batch size: 64 images; 

• Optimizer: Adam; 

• Learning rate: 1e-6; 

• Loss function: Cross-entropy loss; 

• Teacher forcing factor: 1; 

• Framework: PyTorch; 

• GPU: 1 GPU (Tesla P100-PCIE-16GB on Google Colab Pro). 

Due to the restricted run-time usage (~12 hours) by Google Colab, the training had to be 

restarted from the last checkpoint multiple times. 

4.2. Character Rate Error 

To measure model performance on the validation set, which consists of 6,400 augmented 

images, a Character Rate Error (CER) is used. CER is defined as below: 

𝐶𝐸𝑅 =  
𝑆 + 𝐷 + 𝐼

𝑁
                                                                         (6) 

Where: 

• S: number of substitutions; 

• D: number of deletions; 

• I: number of insertions; 

• N: number of reference characters The nominator in the CER formula is basically the 

Levenshtein distance between two strings. 

4.3. Model evaluation 

The model’s CER on the validation set of 6,400 images is 0.7%. Some samples of the 

augmented validation images are given in Figure 9, which show combined effects of dilation, 

distortion, noisy background, and noisy blobs. 

For evaluation, the pre-trained Tesseract-OCR for Khmer is used to extract texts from the 

validation images without further fine-tuning. Tesseract 4.00, which uses both convolutional and 

recurrent neural networks, is used for benchmarking. 

The calculated CER of Tesseract-OCR is 35.9%. Namysl and Konya (2019) reported a 

similar CER by Tesseract-OCR on the highly augmented synthetic images. A more detailed error 

analysis will be given in the next section. 

To assess the effect of data augmentation on the model robustness, the validation set of 

augmented images is de-augmented. This is illustrated in Figure 10. Then, the CERs are computed 

for both the proposed solution and Tesseract-OCR. The calculated CERs for the proposed solution 

and Tesseract-OCR are 0.24% and 1.6%. This suggests perhaps, not enough augmentation was 

applied for training Tesseract-OCR, although it was otherwise claimed by the Tesseract-OCR team. 
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4.4. Visualizing attention heatmap 

Attention is one of the major components of the proposed architecture. With attention, the 

decoder can scan through hidden vectors from the encoder and decide which part of the information 

to use when outputting a character by adaptively computing the attention weights. Attention maps 

along with the predicted texts for some example input images are given in Figure 11 and Figure 12. 

 

Figure 9. Some samples of the augmented 

validation images 

 

Figure 10. Some samples of the de-augmented 

validation images 

 

Figure 11. Attention maps along the predicted 

texts for some input images 

 

Figure 12. Attention maps along with the 

predicted texts for some input images 

 

5. Discussion 

The histograms of Levenshtein distances on the validation set for the trained model and 

Tesseract-OCR are given in Figure 13 and Figure 14, respectively. A few conclusions can be made: 

• Maximum Levenshtein distance by Tesseract-OCR is three times higher than that of the 

proposed model; 
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• For Tesseract-OCR, the error is rather uniformly distributed between 10 and 60 

(Levenshtein distance), while the for the proposed, the error distribution is right-skewed with most 

points located between 0 and 5; 

• For Tesseract-OCR, the mean error is about 9.8, while for the proposed model, the mean 

error is about 0.2; 

• The proposed model is more robust to complex data augmentation than Tesseract-OCR. 

The same observation was also made by Namysl and Konya (2019).  

5.1. The model’s performance in some extreme cases 

To understand the model’s performance better, we identified the images with the largest 

Levenshtein distances. A few identified images are illustrated in Figure 15 along with the predicted 

texts. Figure 15 shows that the recognition performance of the proposed model drops as text quality 

is significantly reduced due to the combined effects of augmentations. Some characters in Figure 

15 are not clearly distinguishable even to human eyes. 

 

Figure 13. The model’s histogram of Levenshtein distances on the validation set 

 

Figure 14. Tesseract-OCR’s histogram of Levenshtein distances on the validation set 
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Figure 15. The proposed model’s predictions on some extreme cases 

6. Conclusion 

This work presents an end-to-end Khmer OCR system that utilizes an encoder-decoder 

(Seq2Seq) network. The encoder is composed of layers of convolutional blocks and layers of GRU 

units. The decoder consists of a layer of GRU units and a linear classifier. The decoder uses an 

attention mechanism to adaptively select parts of the encoder’s outputs that are relevant for 

predicting the target character. The proposed model has trained a collection of synthetic text-line 

images generated by using an open-source text2image tool with degrading effects. Data 

augmentation is further applied on both train and validation datasets to improve the model’s 

robustness. The experiment results suggest that the proposed solution outperforms the current 

state-of-art Tesseract-OCR engine for Khmer by achieving a CER of 0.7% vs. 35.9% on the 

validation set of 6,400 augmented images. A robust OCR system must be able to recognize text in 

the presence of text deformations and noisy backgrounds. The system must also be font-invariant. 

In the future, we would like to train the model on more complex, augmented text-line images, and 

additional Khmer fonts are included. 
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