
Introduction
Plates on elastic foundations can 

be found in several types of engineering 
structures and real life applications such as 
basement foundations of building, traffic 
highways, airport runways, etc.

In the analysis of plates resting on 
elastic foundation, most of the researcher 
used the Winkler elastic foundation model 
and different numerical methods were 
adopted, such as finite element method [1], 
boundary element method [2], and others 
method [3]. A large amount of research 
has been conducted on analysis of free 

vibration of structures on elastic foundation 
by many researchers. For example, Kenney 
[4] studied vibration of anisotropic plate 
assemblies with Winler foundation. Raju 
[5] discussed the effect of mode shape 
change in the stability problem and 
vibration behaviour of simply-supported 
orthotropic rectanggular plates on elastic 
foundation. More recently, Matsunaga [6] 
investigated the vibration and stability of 
thick plates on elastic foundation. Huang 
et al. [7] studied plate resting on elastic 
supports and elastic foundation by finite 
strip method.
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ABSTRACT
A cell-based smoothed three-node Mindlin plate element (CS-MIN3) was recently 

proposed to improve the performance of the existing three-node Mindlin plate element 
(MIN3) for static and free vibration analyses of Mindlin plates. In this paper, the CS-
MIN3 is incorporated with spring systems for treating more complicated static and free 
vibration analyses of Mindlin plates on the elastic foundation. The plate-foundation 
system is modeled as a discretization of triangular plate elements supported by 
discrete springs at the nodal points representing the elastic foundation. The accuracy 
and reliability of the proposed method are verified by comparing with those of others 
available numerical results.
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In the other frontier of developing 
advanced finite element technologies, Liu 
and Nguyen-Thoi [8] have applied a strain 
smoothing technique of meshfree methods 
by Chen [9] into the conventional FEM 
using linear interpolations to formulate a 
series of smoothed finite element methods 
(S-FEM) including the cell-based smoothed 
FEM (CS-FEM) [10] which shows some 
interesting properties in the problems of 
solid mechanics. Extending the idea of the 
CS-FEM to plate structures, Nguyen-Thoi 
et al. [11] have recently formulated a cell-
based smoothed three-node Mindlin plate 
element (CS-MIN3) for static and free 
vibration analyses of isotropic Mindlin 
plates by incorporating the CS-FEM with 
the original MIN3 element [12]. In the 
CS-MIN3, each triangular element will 
be divided into three sub-triangles, and 
in each sub-triangle, the stabilized MIN3 
is used to compute the strains. Then the 
strain smoothing technique on whole the 
triangular element is used to smooth the 
strains on these three sub-triangles. The 
numerical results showed that the CS–
MIN3 is free of shear locking and achieves 
the high accuracy compared to the exact 
solutions and others existing elements in 
the literature.

This paper hence extends the 
triangular plate element CS-MIN3 for 
static and free vibration analyses of plates 
on elastic foundation. The plate-foundation 
system is modeled as a discretization 
of triangular plate elements supported 
by discrete springs at the nodal points 
representing the elastic foundation. The 
accuracy and reliability of the proposed 
method are verified by comparing with 
those of others available numerical results.

Weakform for Mindlin plates on 
elastic foundation

Consider a Mindlin plate on elastic 
foundation as shown in Figure 1. The 
elastic foundation is modeled by springs 
with foundation stiffness coefficient kf .

Figure 1. Model of a Mindlin thick plate 
on elastic foundation
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The middle (neutral) surface of 
plate is chosen as the reference plane 
that occupies a domain 2RΩ ⊂  as shown 
in Figure 2. Let w be the deflection, and 
βT=[βx  βy] be the vector of rotations, 
where xβ , yβ  are the rotations of the 
middle plane around y-axis and x–axis, 
respectively, with the positive directions 
defined as shown in Figure 2. 

The unknown vector of three 
independent field variables at any point in 
the problem domain of the Mindlin plates 
can be written as T

x yw β β =  u . The 
bending and shear strains κ  and γ  of the 
deflected plate are defined, respectively, as

             (1)

where [ ]/ / Tx y∇ = ∂ ∂ ∂ ∂  and dL  is a 
differential operator matrix. The standard 
Galerkin weakform of the transient 
analysis of Mindlin plates on elastic 
foundation can now be written as Huang 
[7]

d d d d dT b T s T T T
fw k wδ δ δ δ δ

Ω Ω Ω Ω Ω

Ω + Ω + Ω + Ω = Ω∫ ∫ ∫ ∫ ∫D D u m u u bκ κ γ γ
                                     

(2)
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where ( ), 0 0
T

b x y=   b , in which 
( ),b x y  is the distributed load applied 

on the plate; m is the matrix containing 
the mass density of the material ρ  and 

thickness t; bD  and sD  are the material 
matrices related to the bending and shear 
deformations. 

Figure 2. Positive directions of displacement w and
two rotations xβ , yβ  in Mindlin plate

Formulation of the CS-MIN3 for 
Mindlin plates on elastic foundation

FEM formulation for Mindlind 
plates on elastic foundation [7]

Now, discretize the bounded domain 
Ω  into eN  finite elements such that 

1

eN

e
e=

Ω = Ω  and i jΩ ∩ Ω ≠ ∅ , i j≠ , then the 

finite element solution 
Th

x yw β β =  u
of a displacement model for the Mindlin 
plates is expressed as:
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  (3)

where nN  is the total number of nodes 
of problem domain discretized; ( )IN x  is 

shape function at node I; [   ]T
I I xI yIw β β=d

is the displacement vector of the nodal 

degrees of freedom of hu  associated to 
node I, respectively. 

The bending and shear strains can be 
then expressed in the matrix forms as:

I I
I

= ∑B dκ
,         

s
I I

I
= ∑S dγ

                  
(4)
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in which ,I xN  and ,I yN  are the derivatives 
of the shape functions in x-direction and 
y-direction, respectively. The discretized 
system of equations of Mindlin plates 
on elastic foundation using the FEM for 
transient analysis then can be expressed as               

                 + =Md Kd F                         (6)
where K is the global stiffness matrix 
given by

                 
d d dT b T s T

w f wk
Ω Ω Ω

= Ω + Ω + Ω∫ ∫ ∫K B D B S D S N N
                                            

(7)

in which [ ]1 2 30 0 0 0 0 0=N T
w N N N ; F  is the load vector defined by
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d bp
Ω

= Ω +∫F fΝ                             
(8)

in which bf is the remaining part of F
subjected to prescribed boundary loads, 
and M  is the global mass defined by

d
Ω

= Ω∫ TM N mN
                                 

(9)

Formulation of CS-MIN3 for 
Mindlin plates on elastic foundation

In the CS-MIN3 [11], the domain 
discretization is the same as that of the 
MIN3 using nN  nodes and eN  triangular 
elements. However in the formulation of 
the CS-MIN3, each triangular element eΩ  
is further divided into three sub-triangles 

1∆ , 2∆  and 3∆  by connecting the central 
point O of the element to three field nodes 
as shown in Figure 3

In the CS-MIN3, we assume that the displacement vector eOd  at the central point O 
is the simple average of three displacement vectors 1ed , 2ed  and 3ed  of three field nodes.

                                          
( )1 2 3

1
3eO e e e= + +d d d d

                                                          
(10)

Using the MIN3 method for the sub-triangle 1∆ , the bending and shear strains 1∆κ

and 1∆γ  can be approximated by

                        

(11)

where 1∆b  and 1∆s  are,  respectively, computed similarly as the matrices B  and S  
of the MIN3 [11]. Substituting eOd  in Eq. (10)  into Eq. (11) , we obtain

[ ]1 1 1 1 1 1 1

1
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333

T
ee e e
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(12)

[ ]1 1 1 1 1 1 1
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(13)

Figure 3. Three sub-triangles ( 1∆ , 2∆  and 3∆ ) created from the triangle 1-2-3 in
the CS-MIN3 by connecting the central point O with three field nodes 1, 2 and 3
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Similarly, by using cyclic 
permutation, we easily obtain the 
bending and shear strains j∆κ , j∆γ
and matrices j∆B , j∆S , 2,3j = , for the 
second sub-triangle 2∆  (triangle O-2-3) 
and third sub-triangle 3∆  (triangle O-3-
1), respectively.

Now, applying the cell-based strain 
smoothing operation in the CS-FEM [10], 
the constant bending and shear strains j∆κ  
and j∆γ , 1,2,3j =  are, respectively, used 
to create a smoothed bending and shear 
strains eκ  and eγ  on the element eΩ  such 
as: 

                   (14)

where e
Β  and eS  are the smoothed bending 

and shear strain gradient matrices given by

3

1

1 j

je
je

A
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∆
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1 j
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A

∆
∆

=

= ∑S S

   
(15)

Therefore the global stiffness matrix 
of the CS-MIN3 are assembled by 

              1

eN

e
e=

= ∑K K 

                             
(16)

where  is the smoothed element 
stiffness for plate given by

ˆd d d

ˆ     d
eee

e

T b T s T
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(17)

Note that for convenience in 
numerical computation, the foundation 
stiffness coefficient fk  in Eq. (17) can be 
derived from the following equation ref in 
Huang [7] 

            
4/fk KD B=                          (18)

where K is the non-dimensional elastic 
foundation coefficient; B is the shorter 
dimension of the plate; and ( )3 / 12(1 )D Et= −ν

 is the bending stiffness of the plate.
Numerical results
Free vibration analysis of Mindlin 

plate on elastic foundations

Figure 4. Model of a plate on elastic foundation
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x 

kf kf kf kf kf kf 

Consider the free vibration analysis 
of a rectangular plate rested on the elastic 
foundation with the non-dimensional 
elastic foundation coefficient given by 

100K = . The dimensions of the plate are 
given by length L=30m, width B=10m 

and thickness t=0.5m as shown in Figure 
4. The boundary conditions of plate are 
simply supported along four edges of 
plate and the density of plate is given by 
ρ = 2500 kg/m3.
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Figure 5. Five lowest frequencies of the plate on elastic foundation discretized by mesh 
15×5

Figure 6. Six lowest eigenmodes of the plate on elastic foundation (mesh 45×15) by the 
CS-MIN3. (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6

              

(a)                                                                     (b)

                                     

(c)                                                             (d)

                      
(e)                                                               (f)
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Figure 5 plots five lowest frequencies 
of plate by CS-MIN3 methods for the 
meshes 15×5. It is observed that the results 
of CS-MIN3 agree excellently with the 
reference solution [7]. In addition, Figure 6 
plots the shape of six lowest eigenmodes of 
plate on the elastic foundation using the CS-
MIN3. It is seen that the shapes of eigen-
modes reveal the real physical modes.

Static analysis of Mindlin plate on 
elastic foundations

Now, the static analysis of the plate 
on the elastic foundation is considered. The 
model of plate in Figure 4 is still chosen 
to analysis, however in order to compare 
the results with those of reference solution 
[7], the dimensions of the plate are reset 
into the length L=50m, width B=10m, 

thickness t=0.02m and the non-dimensional 
elastic foundation coefficient is given 
by 1000=K . In addition, the plate is 
subjected to a concentrated load P=1000N 
at the center of plate. The plate is free 
along two longer edges and is simply 
supported along the two remaining edges. 
In addition, Young’s modulus of material 
is given by 9 231 10 N/m= ×E  and Poisson’s 
ratio of material is also given by v = 0.2. 
Four uniform discretizations of plate 
corresponding to 72, 200, 252 and 800 
elements are used. 

The convergence of deflection is first 
studied. Figure 7 compares the convergence 
of central deflection 2/( )w wD PB=  of plate. 
It is seen that the solution of the CS-MIN3 
is the closest to the reference solution.

Figure 7. Convergence of central deflection 2/( )w wD PB=
of plate on the elastic foundation

Next the effects of plate dimention 
ratio B/L are studied by keeping the plate 
width B=10m fixed, while the plate length 
L is changed. Figure 8 shows the deflection 
of the middle-line along the longitudinal 
axis using the CS-MIN3 when the length 

L of plate is changed. It can be seen that 
when the length L inceases, the region of 
distribution of deflection is narrower. In 
addition, this result is quite similar to that 
in Huang and Thambiratriam [7].
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Conclusion
The paper presents an incorporation 

of the original CS-MIN3 with spring 
systems for treating more complicated 
static and free vibration analyses of 
Mindlin plates on the elastic foundation. 
The plate-foundation system is modeled 
as a discretization of triangular plate 
elements supported by discrete springs at 
the nodal points representing the elastic 

foundation. The accuracy and reliability 
of the proposed method are verified by 
comparing with those of others available 
numerical results. 
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Figure 8. Deflection of the middle-line along the longitudinal 
axis by the CS-MIN3 when the plate length is changed
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