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ABSTRACT 

The paper presents a dynamic analysis of train-track systems supported by viscoelastic foundations 
by combining Timoshenko’s beam theory and moving element method (MEM). In the proposed method, a 
three-node beam element is utilized to get a high order approximation for the deflection of Timoshenko 
beam. The reduced integral method is applied in order to avoid the shear-locking phenomenon when 
computing the shear strain energy of the rail beam. In addition, the behavior of train-track system with 
respect to time is deduced by using Newmark’s constant acceleration method. Numerical results show 
that the proposed method is free of shear locking and gives a good agreement with Koh et al.’s method 
using Euler-Bernoulli beam theory. 
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1. Introduction 

Moving- dymanic problemsload
which are very common in engineering 
have received a lot of interests from 
researchers all around the world from quite 
early. It was believed that in 1847, the 
collapse of Stephanson’s Bridge in 
England motivated researchers to find out 
accurately the effects of moving loads to 
structures [1]. Among a large number of 
structures subjected to moving load, 
transport engineering structures like 
railways, bridges or pavements have 
gained much concern from beginning stage 
[2].  

Up to now many models have been developed to study the behavior of the transport structures under moving loads. In these models, structural components which are usually considered as beams, plates or shells are idealized by some structural theories such as Euler
Kirchhoff’s plate theory. Moving loads 
have also been split into many cases such 
as moving constant or time depended 
forces, moving masses and moving vehicle 
systems. Besides that, to reflect the reality, 
the effect of foundation on which the 
structures lie has been counted and divided 
into many cases like elastic and 
viscoelastic foundations.  

Initially, analytic methods have been 
used widely to study the effect of moving 
load to transport structures. Some of these 
methods which can be named here are the 
method of using Green’s function and 
integral equations [3], method of expansion 
of the eigen-functions [4], Galerkin’s 
method [5] and the Fourier transform 
method (FTM) [6, 7]. For example, in 1958 
and 1959, P. M. Mathews [6, 7] made an 
analysis of vibration of an infinite uniform 
beam on elastic foundation under an 
alternation force moving at a constant 
velocity. In this work, a new coordinate 
system moving with the force was defined 
and the deflection of the beam modeled by 
Euler-Bernoulli’s beam theory was then 
found by using Fourier transform 
technique. 

In recent decades with the quick 

development of digital computers, many 
numerical methods such as finite element 
method (FEM), mesh-free method, finite 
difference method have been proposed. 
These new methods have made the 
researching of mechanics in general and of 
moving load problems in particular 
become more convenient and expandable. 
Along with this, all branches of transport 
have obtained many great advances with 
huge increase in speed and weight of 
vehicles. This fact has made the 
researching of dynamic responses of 
structures under moving vehicles become 
more and more important. Although 
proving the strength in analyzing various 
structures in engineering, finite element 
method (FEM) [8] has encountered many 
obstacles when facing with moving load 
problems. For example, a very large 
domain of structure subjected to high speed 
moving load requires a mesh with a lot of 
degrees of freedom (DOFs). Besides that, 
keeping track of load positions related to 
mesh nodes is unavoidable. These 
restrictions have increased much 
computational cost. Therefore, recently, to 
solve this kind of problems, some new 
approaches which commonly use moving 
coordinates have appeared and improved 
their efficiency.  

In 2000 and 2001, Chen and Huang 
[9, 10] studied infinite Timoshenko beam 
subjected to a moving load on viscoelastic 
foundation. By using a moving coordinate 
as Matthew [6, 7], the dynamic stiffness 
matrix of the beam with the velocity 
component inside is established. In 2003, 
C. G. Koh et al. [11] proposed a new 
approach called moving element method 
(MEM), which was a combination of FEM 
and moving coordinate, for analyzing the 
dynamic of train-track systems. In their 
work, the Euler-Bernoulli rail beam on 
viscoelastic foundation was discretized into 
elements which ‘flow’ with the moving 
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vehicles/forces. The train was modeled by 
a spring-mass-damper system which is 
then coupled with the beam equations to 
form governing equations. In 2013, this 
problem is then expanded by Ang and Dai 
to deal with the abrupt change of 
foundation stiffness [12]. 

After being released, MEM has being 
extended to research other types of 
structure under moving load. In 2007, Koh 
et al. [13] used their new method to 
analyze the half-space continuum under 
different moving load types such as strip 
loads and concentrated loads. In 2009, 
MEM for random vibration analysis of 
vehicles on Kirchhoff plate supported by 
Kelvin foundation was presented by Xu et 
al. [14]. 

In this paper, the application of MEM 
in analyzing train-track system is extended 
by using Timoshenko beam theory to 
model rail beam. With this extension, shear 
strain of rail beam is counted and the 
model becomes more appropriate to reality. 
Because of the specific property of MEM, 
a three-node element is used to gain a high 
order approximation for both deflection 
and rotation of Timoshenko beam. The 
reduced integral method is then applied 
when computing the shear strain energy of 
the rail beam to avoid the shear-locking 
phenomenon. In numerical example 
section, both moving constant force and 
moving vehicle system are taken to study. 
The behavior of train-track system with 
respect to time is deduced by using 
Newmark’s constant acceleration method. 
The reliability and accuracy of the 
proposed method which is called MEM-T 
for brief are verified by comparing its 
numerical results with those of Koh [11] 
by using Euler-Bernoulli beam theory 

(briefly, MEM-E). 
2. Formulation of the moving 

element method (MEM-T) 

In this paper, the train-track system is 
modeled simply as in Figure 1. The train is 
modeled as a spring-mass-damper system 
which has only 3 DOFs (u1, u2, u3) 
corresponding to three vertical 
displacements of three masses (m1, m2, m3). 
These massess represent the wheel-axle 
system, the bogie, and the train body, 
respectively. Between the lowest mass m1 
and the rail beam there are a spring k1 and a 
damper c1 which implement the Hertzian 
contact effects. Between the three masses 
there are two suspension systems which are 
modeled by two couples of spring and 
damper, (k2, c2) and (k3, c3). The train is 
assumed to move at a constant speed V in 
the positive x-direction. The rail is 
modeled as an infinite Timoshenko beam 
with Young’s modulus E, shear modulus 
G, second moment of area I and mass per 
unit length m . This beam is supported on 
a viscoelastic foundation whose stiffness 
and damping per unit length are k  and c , 
respectively.  

Instead of starting from the governing 
differential equations of Timoshenko beam 
on viscoelastic foundation, we use energy 
approach to find out the weak form of the 
dynamic problem. By combining principle 
of virtual work with a moving coordinate, 
the governing equations of Timoshenko 
beam on viscoelastic foundation is 
formulated in this coordinate. The motion 
equations of vehicle system are then 
assembled with rail beam equations to 
form the overall equations. 

28 Ho Chi Minh City Open University Journal of Science–No.4(1) 2014



 
    

 
Figure 1. Train-track model 

In detail, we only consider a segment of 
the rail beam such that both its upstream 
and downstream ends are sufficiently far 
from the wheel contact point. As a result, 

the forces and moments at these ends are 
possible to be negligible. We have the 
displacements of the segment of the 
infinite Timoshenko beam are given by 
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Then the strain and stress fields are easily deduced as 
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, (2) 

where   is the shear coefficient which is usually given by 5 6/ . 

If we set two operators of bending and shear strain and the displacement field of 
Timoshenko beam which contains only the deflection w and rotation   as  

 
0 1, ,

w
xx 
                 

1 2L L u  , (3) 

then the energy strain of Timoshenko beam which is a sum of bending and shear 
component is written briefly as 
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   2 21 1

2 2L L
U EI dx GA dx  1 2L u L u , (4) 

 
where L  is the length of the beam segment 
and A  is the area of beam cross section. 

2.1. Energy method for dynamic 
analysis of train-track system 

In this section, we use the principle of 
virtual work to formulate the weak form of 
Timoshenko beam on viscoelastic 
foundation. This principle states that for 

any compatible and small virtual 
displacements imposed on the body, the 
total internal virtual work done IW  must be 
equal to the total external virtual work 
done EW .  

The internal virtual work of rail beam 
can be expressed as 

 

        T T

I L
W U EI dx kGA dx     1 1 2 2L u L u L u L u , (5) 

whereas the external virtual work done EW  
consists of the works done by the dynamic 
force at the wheel contact point, the inertial 

force of beam, the elastic and damping 
forces of the foundation. 

 

 
1 2 3 4

E E E E EW W W W W    . (6) 

Particularly,  
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, (7) 

in which  F t  given in Eq. (21) is the 
dynamic force at the wheel contact point 
and Dirac  denotes the Dirac-delta function. 

Note that x-coordinate is a fix 
coordinate in the longitudinal direction of 
the beam with the origin is chosen such 

that the contact point is at 0x   when time 
0t  . To avoid keeping track of the load 

position, a moving coordinate system is 
defined as follow 

 

 r x Vt  . (8) 
Applying the chain rule we can easily 

transform the derivatives with respect to 
the fix coordinate x  and the derivatives 
with respect to time t  as follows 

 

2 2 2 2 2 2
2

2 2 2 2 2
2

V
t rtrx

V V
r t rt trx

                       
      

. (9) 

At the point of time 0t  , in the fixed 
co-ordinate, the position of the beam 
segment is  2 2/ , /L L  and in general, at 

arbitrary point of time t  this position is 
 2 2/ , /vt L vt L  . By using the moving 
coordinate system above the interesting 
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domain of beam is always  2 2/ , /L L  and 
the position at which the moving force 
affect the beam is always 0r  . So there’s 
no need to keep track of moving load. 

In the moving coordinate we have the 
internal and external virtual works are 
rewritten as follows. 

        1 1 2 2   L u L u L u L u
TT

I LL
W EI dr kGA dr   (10) 

where 

 
0 1, ,

w
r r 

                  
1 2L L u   (11) 

are the two operators of bending and shear 
strain and the displacement field of 
Timoshenko beam in moving coordinate. 

Similarly, the total external virtual work in 
this moving coordinate is given by
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





. (12)

2.2. Foundation of MEM 
As in equation (12) we can see that 

there is a second order derivative with 
respect to r  so we use three node elements to 

discretize the displacement field (Figure 1).  
Consider a typical three node element 

whose length is el . The shape functions for 
this element is given by 
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Then the displacement field is approximated as follows 
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, (14) 

in which   1 1 2 2 3 3
T

e w w w     q  is a vector of six DOFs of a beam element and 
the matrices of shape functions are 

 
   1 2 3

1 2 3
1 2 3

0 0 0 0 0 00 0 0 w

N N N
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      

N N . (15) 

Substitute Eq. (14) into Eq. (10) and (12), we have the approximated internal and external 
virtual works are given by 
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Finally, the weak form of the problem is deduced from the principle of virtual work, 
I EW W . Therefore 
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For simplicity, the Gaussian quadrature 
rule is used to compute these matrices 
above. In addition, reduced integration 
technique is applied when computing the 
shear component of the stiffness matrix eK  
in order to overcome the shear-locking 
phenomenon. Particularly, instead of using 
three Gaussian points as normal (because 
second order shape functions are used), we 
only use two points here. Because the 
virtual displacement vector eq  is 
arbitrary, it can be eliminated to give the 

governing equations of the rail beam. 
2.3. The coupled equations of 

motion for the train-track model 
Besides the effect of moving gravity 

load, train-track vibration is also caused by 
the roughness of the rail. Therefore it is 
necessary to include the rail corrugation in 
the formulation. By using Newton’s second 
law, we can easy find the force equilibrium 
equations for each mass in train-track 
model as 
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  (20) 

in which cy  is the rail corrugation 
expressed as a function of time, 0 0r

w w


  
is the rail deflection, both at wheel contact 
point, and g  is the acceleration due to 

gravity. From the third equation in Eq. (20) 
we have the wheel contact force is given 
by 

 

      1 1 0 1 1 0c cF t c u w y k u w y        . (21) 

Eq. (20) then is coupled with the rail beam to create equations of motion for train-track 
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model 

   Mz Cz Kz P  . (22) 
Here z  is the displacement vector 

which consists all DOFs of beam and three 
DOFs of train system. M , C , K  are 
structural matrices which obtained by 
assembling the corresponding matrices of 
the beam model and the train model. 
Finally, Newmark’s constant acceleration 
method is used to solve the above dynamic 
equation. 

3. Numerical examples 

In this section, to verify the efficiency 
of the proposed method, we will use some 
problems proposed by Koh et al. in their 

first paper of MEM [11]. Particularly, 
parameters for track and vehicle are given 
as in  

 with an addition is that the Poisson’s 
ratio of rail beam is 0 3.  . Here we will 
illustrate two cases of moving load, 
constant force at constant velocity for the 
first case and 3-DOF vehicle at constant 
velocity for another. Both MEM-T and 
MEM-E methods are implemented. To put 
all of these methods in a same condition, 
we only use a regular mesh of 100 beam 
elements as being used by Koh et al. [11]. 
 

Table 1. Parameters of train-track system  

Track parameters 

L 50 m m 60.0 kg/m 
E 2.00 x 1011 Pa k 1.00 x 107 N/m2 

I 3.06 x 10-5 m4 c 4900 Ns/m2 

Vehicle parameters 

m1 350 kg m2 250 kg m3 3500 kg 
k1 8.00 x 109 N/m k2 1.26 x 106 N/m k3 1.41 x 105 N/m 
c1 6.70 x 105 Ns/m c2 7.10 x 103 Ns/m c3 8.87 x 103 Ns/m 

 

Besides that, in the case of moving 
force, the shear-locking phenomenon is 
illustrated by comparing results from 
different methods when the thickness of 
rail beam changed. It’s assumed that h  is 
the thickness of rail beam corresponding to 
the original data of Koh et al. and the area 
of beam cross section and the second 
moment of area is given by A h  and 

2 12/I Ah , respectively. 

3.1. Constant force at constant 
velocity 

In this example, the rail beam is 

assumed to be smooth and the damping of 
foundation is removed. We only consider 
the effect of the total gravity load of three 
mass moving at a constant velocity of 20 
m/s. Because the excitation is a constant 
force, the solution is time invariant at the 
steady state. All time derivatives in Eq. 
(22) are vanished. As a results, there’s no 
need to using Newmark’s method. Besides 
solution from MEM-E method proposed by 
Koh at al. [11], another one called quasi-
static solution from Ref [15] is used as a 
comparator. This solution is given 
explicitly by 
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      sincosr r rw r Ae         (23) 

in which 2/A F k  with F  is the constant moving load and  1 44 /
/k EI  . 

Table 2. Deflection of Beam at Contact Point (mm) 

Deflection of Beam at Contact Point (mm) 

Thickness 
Quasi-static 

[Error! 
Reference 
source not 

found.] 

(MEM-E) 
[Error! 

Reference 
source not 

found.] 

MEM-T 
(Reduced Int) 

MEM-T (Full 
Int) 

8h -0.3380 -0.3381 -0.3393 -0.3408 
4h -0.5684 -0.5685 -0.5699 -0.5731 
2h -0.9560 -0.9562 -0.9580 -0.9679 
h  -1.6078 -1.6088 -1.6110 -1.6455 

h/2 -2.7039 -2.7075 -2.7111 -2.7845 
h/4 -4.5474 -4.5458 -4.5663 -4.4142 
h/8 -7.6478 -7.4411 -7.6797 -6.0722 

 
Table 3. Error Percent to Quasi-static solution 

Error Percent to Quasi-static solution (%) 

Thickness 
Koh et al. [Error! 
Reference source 

not found.] (MEM-
E) 

MEM-T (Reduced 
Int) MEM-T (Full Int) 

8h 0.0314 0.3923 0.8401 
4h 0.0096 0.2650 0.8250 
2h 0.0258 0.2069 1.2472 
h 0.0662 0.1988 2.3461 

h/2 0.1335 0.2672 2.9792 
h/4 -0.0353 0.4155 -2.9302 
h/8 -2.7035 0.4170 -20.6023 

 
The deflections of beam at contact 

point corresponding to different cases of 
beam thickness are computed and 
presented in Table 2. Table 3 shows the 
error percent of other methods compared to 

the quasi-static solution. It’s obvious that 
MEM-T using reduced integration gives 
good agreement with MEM-E and quasi-
static solution. In addition, MEM-T using 
reduced integration is also free of shear-
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locking when the rail beam is thinner 
whereas MEM-T using full integration is 
not. Figure 2, Figure 3 represents the rail 
displacement profiles computed by the 
mentioned methods. Clearly, no matter if 

the beam is thinner or thicker, the proposed 
method gives excellent agreements with 
both MEM-E method and quasi-static 
solution. 

 

 
Figure 2. Rail displacement profile corresponding to some cases of beam thickness 

 

 
Figure 3. Rail displacement profile corresponding to some cases of beam thickness 

3.2. 3-DOF vehicle at constant 
velocity 

We now consider a moving vehicle load 
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instead of a pure force. In this case, the rail 
corrugation is counted as an excitation and 

is given by a periodic function, 

 

      0 02 2sin / sin /c c c c cy x y x y Vt       (24) 

 
where the amplitude and wavelength are 
given by 0 0 5.cy   mm, 0 5.c   m, 
respectively. The vehicle is modeled as a 
spring-mass-damper moving on the rail 
beam at a constant velocity, 20V   m/s. 

The displacement of beam at wheel contact 
point and displacements of three masses 
which represent three components of the 
train is taken to study. 

 

 
Figure 4. Displacements of train masses and displacement  

of beam at the contact point 

The dynamic equations of MEM is 
solved by using Newmark’s constant 
acceleration with a time step of 0 0001. s and 
at-rest initial conditions. As in previous 
example, MEM-E and MEM-T with 
reduced or full integration used are 
implemented. Figure 4 shows the dynamic 
responses of the rail displacement at the 
contact point and the displacements of three 
masses in a typical corrugation cycle, T= 

/c V  = 0.025s. In these results, the static 
responses due to self-weight of the three 
masses are excluded. We can see an 
excellent agreement between MEM-T using 
reduced integration and MEM-E proposed 
by Koh et al. 

4. Conclusion 

In this paper, the moving element 
method (MEM) is extended to analyze the 
dynamic behaviors of train-track system 
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which is modeled by a Timoshenko beam 
on viscoelastic foundation subjected to a 
moving spring-mass-damper system. The 
proposed method is hence called as the 
MEM-T. The coupled train-track 
governing equations are then established 
and solved by Newmark’s constant 
acceleration. In the MEM-T, the reduced 
integration is used to avoid the shear 
locking. The numerical examples show that 
the results by the MEM-T agree well with 
those by Koh et al. [11] using Euler beam 

theory. The obtained results are very 
promising to extend to analyze the 
dynamic behavior of beam structures made 
by composite and FGM. 
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