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Since miRNAs have broad effects on tissue homeostasis and 

disease development, it is particularly interesting to work out how 

miRNAs themselves are being regulated. Such data could provide 

crucial information for further understanding the mechanism 

underlying disease development and for being able to manipulate 

these miRNAs therapeutically. Generally, the expression of 

miRNAs can be regulated transcriptionally, epigenetically, or 

controlled by different stimuli e.g., cytokines and growth factors. 

In review, just transcription factors, cytokines, and growth factors 

controlling the miR-29 family expression in human diseases were 

for the first time investigated. 

1. Introduction 

MicroRNAs are an abundant class of evolutionarily conserved, short (~22nt long), 

single-stranded RNA molecules that have recently emerged as important post-transcriptional 

regulators of gene expression by binding to specific sequences within a target mRNA (Ambros, 

2004; Bartel, 2004). To date, 1424 miRNAs have been identified in human cells and each was 

predicted to regulate several target genes (Kozomara & Griffiths-Jones, 2011; Lim et al., 2005). 

Computational predictions indicate that more than 50% of all human protein-coding genes are 

potentially regulated by miRNAs (Friedman, Farh, Burge, & Bartel, 2009; Lewis, Burge, & 

Bartel, 2005). The abundance of mature miRNAs varies extensively from as few as ten to more 

than 80,000 copies in a single cell, which provides a high degree of flexibility in the regulation 

of gene expression (Chen et al., 2005; Suomi et al., 2008). The regulation exerted by miRNAs 

is reversible, as feedback/forward regulatory loops have been shown to exert modifying effects 

during translation (Inui, Martello, & Piccolo, 2010).  

 2. MicroRNA biogenesis 

Despite the obvious differences between the biology of miRNAs and mRNAs, all 

available evidence suggests that these transcripts share common mechanisms of transcriptional 

regulation. Generally, the generation of a miRNA is a multi-step process that starts in the 

nucleus and finishes in the cytoplasm (Lee, Jeon, Lee, Kim, & Kim, 2002). Firstly, miRNAs 

are transcribed by the RNA polymerase II complex (Lee et al., 2004) and subsequently capped, 

polyadenylated, and spliced (X. Cai, Hagedorn, & Cullen, 2004). Transcription results in a 

primary miRNA transcript (prior-miRNA) that harbors a hairpin structure (Kim, 2005; Lee et 

al., 2002). Within the nucleus, the RNAse II-type molecule Drosha and its cofactor DGCR8 
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process the pri-miRNAs into 70- to 100-nt-long pre-miRNA structures (Han et al., 2004; Lee 

et al., 2003), which in turn are exported to the cytoplasm through the nuclear pores by Exportin-

5 (Bohnsack, Czaplinski, & Gorlich, 2004; Lund, Güttinger, Calado, Dahlberg, & Kutay, 2004; 

Yi, Qin, Macara, & Cullen, 2003; Zeng & Cullen, 2004). Subsequently, the RNAse III-type 

protein Dicer generates a double-stranded short RNA in the cytoplasm that consists of the 

leading-strand miRNA and its complementary sequence (Chendrimada et al., 2005; Grishok et 

al., 2001; Hutvagner et al., 2001; Ketting et al., 2001). This duplex miRNA is unwound by a 

helicase into a single-stranded short RNA in the cytoplasm and the leading strand is 

incorporated into the argonaute protein (Ago 2)-containing ribonucleoprotein complex known 

as the miRNA-induced silencing complex, mRISC (Bossé & Simard, 2010; Hammond, 

Bernstein, Beach, & Hannon, 2000; Hutvagner & Simard, 2008). During this process, one 

strand of the miRNA duplex is selected as the guide miRNA and remains stably associated with 

mRISC, while the other strand, known as the passenger strand is rapidly removed and degraded 

(Martinez, Patkaniowska, Urlaub, Lührmann, & Tuschl, 2002). The selection of the appropriate 

strand is primarily determined by the strength of base pairing at the ends of the miRNA duplex. 

The strand with less-stable base pairing at its 5’ end is usually destined to become the mature 

miRNA (Hutvagner, 2005; Khvorova, Reynolds, & Jayasena, 2003; Schwarz et al., 2003). 

However, some miRNA passenger strands are thought to negatively regulate gene expression. 

One hypothesis is that both strands could be used differently in response to extracellular or 

intracellular cues, to regulate a more diverse set of protein-encoding genes as needed, or strand 

selection could be tissue-specific (Ro, Park, Young, Sanders, & Yan, 2007). The mature 

miRNA guides the RISC complex to the 3’UTR of its target miRNA (Bartel, 2009; Lai, 2002). 

The seed sequence, comprising nucleotides 2-8 at 5’-end of the mature miRNA, is important 

for binding the miRNA to its target site in the mRNA (Lewis et al., 2005). Association of 

miRNA with its target results in mRNA cleavage (if sequence complementarity is high) or more 

usually in higher eukaryotes, blockade of translation (Zeng & Cullen, 2004) (see below). 

In an alternative pathway for miRNA biogenesis, short hairpin introns termed mirtrons 

are spliced and debranched to generate pre-miRNA hairpin mimics (Berezikov, Chung, Willis, 

Cuppen, & Lai, 2007; Okamura, Hagen, Duan, Tyler, & Lai, 2007; Ruby, Jan, & Bartel, 2007; 

Sibley et al., 2012; Westholm & Lai, 2011). These are then cleaved by Dicer in the cytoplasm 

and incorporated into typical miRNA silencing complexes (Berezikov et al., 2007; Okamura et 

al., 2007; Ruby et al., 2007; Sibley et al., 2012; Westholm & Lai, 2011). The presence of 

mirtrons may be an evolutionary strategy to diversify miRNA-based gene silencing (Lau & 

MacRae, 2009). 

3. MicroRNA 29 family genome 

The miR-29 family is intergenic miRNAs encoded in two gene clusters e.g., one for the 

primary miR-29a/b1 on chr.7q32, and the other for the primary miR-29b2/c on chr.1q32.2 

(Chang et al., 2008; Saini, Griffiths-Jones, & Enright, 2007). The miR-29b1 and miR-29a 

precursors are processed from the pri-miR-29a/b1 last intron (Genbank accession EU154353) 

whilst the miR-29b2 and miR-29c precursors are from the pri-miR-29b2/c last exon (Genbank 

accession EU154352 and EU154351) (Chang et al., 2008) (Figure 1). 

 

http://www.ncbi.nlm.nih.gov/nuccore/EU154353
http://www.ncbi.nlm.nih.gov/nuccore/EU154353
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Figure 1. Genomic organization of the miR-29 family 

The miR-29 family includes three members miR-29a, miR-29b and miR-29c. The 

primary pri-29a/b1 is located in chromosome 7 containing pre-29a and pre-29b1. The primary 

pri-29b2/c is located in chromosome 1 including pre-29b2 and pre-29c. The hairpins indicate 

the locations of the sequence encoding precursors of miR-29s. Pre-29a and pre-29c will process 

into mature miR-29a and miR-29c, respectively. Pre-29b1 and pre-29b2 will process into 

mature miR29b. The mature sequences of the miR-29 family members share identical seed 

regions. Nucleotides that differ among miR-29s are indicated in italics. 

4. Transcriptional regulation of miR-29 expression 

The miR-29 family precursors are all transcribed as polycistronic primary transcripts 

(Chang et al., 2008; Mott et al., 2010) upon which various transcriptional regulators e.g., NFκB 

(Liu et al., 2010; Mott et al., 2010), suppressors (Mott et al., 2010; Parpart et al., 2014), 

Sp1(Amodio et al., 2012; Liu et al., 2010), Gli (Mott et al., 2010), Yin-Yang-1, Smad3 (Qin et 

al., 2011), Ezh, H3K27, HDAC1, HDAC3), or inducers (Gli, SRF, Mef2, TCF/LEF, GATA3 

(Chou et al., 2013), CEBPA (Eyholzer, Schmid, Wilkens, Mueller, & Pabst, 2010)), and 

signaling pathways e.g, Wnt, TGFβ, TLR/NF𝜅B, TNF𝛼/NF𝜅B, hedgehog signalling have been 

reported to be directly and/or indirectly involved. 

5. Wnt signalling 

Both canonical and non-canonical Wnt signaling was reported to induce the miR-29 

family level in different cellular contexts: Wnt3a rapidly induces miR-29 levels in osteoblastic 

cells (Kapinas, Kessler, & Delany, 2009; Kapinas, Kessler, Ricks, Gronowicz, & Delany, 2010) 

or in muscle progenitor cells (MPCs) (Hu et al., 2014), respectively, at least in part through the 

two putative TCF/LEF-binding sites in the miR-29a promoter (Kapinas et al., 2010); non-

canonical Wnt signaling through Wnt7a/Frizzled 9 resulted in increased expression of only the 

mature miR-29b but not miR-29a or c or any miR-29b primary or precursor forms in non-small 

lung cancer cell lines H661 and H15 (Avasarala et al., 2013). In addition, ERK5 and PPAR𝛾, 

key effectors of the Wnt7a/Frizzled 9 pathway, were also observed to be strong inducers of 

miR-29b expression (Avasarala et al., 2013). 
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6. TGFβ/Smad3 signalling 

In contrast to Wnt signaling, TGFβ/Smad3 signaling was shown to negatively regulate 

miR-29 family expression in different cell lines e.g., human aortic adventitial different cell lines 

e.g., human aortic adventitial fibroblasts (Maegdefessel et al., 2012), renal fibrosis cells 

(Ramdas, McBride, Denby, & Baker, 2013; B. Wang et al., 2012), murine hepatic stellate cells 

(Roderburg et al., 2011), rat hepatic stellate cells (Kwiecinski et al., 2011), human skin 

fibroblasts (Maurer et al., 2010), human tenon’s fibroblast (Li, Cui, Duan, Chen, & Fan, 2012), 

human lung fibroblast cell line (Cushing et al., 2011; Yang et al., 2013). The suppressive effect 

of TGFβ/Smad3 signaling on miR-29 expression was partly mediated through a Smad3 binding 

site in the highly conserved region around 22kb upstream of the miR-29b2/c promoter as 

showed by chromatin immunoprecipitation assay (Qin et al., 2011; Ramdas et al., 2013). 

7. Toll-like receptor (TLR) and TNF𝜶 signallings 

Similar to TGF𝛽, Toll-like receptor (TLR) signaling and TNF𝛼 signaling have been 

shown to mediate suppressive effects on miR-29 family expression. In man, treating human 

cholangiocarcinoma cells with TLR ligands e.g., TLR3 (Poly (I: C)), TLR4 (LPS), TLR5 

(flagellin), TLR6 (MALP-2) showed a significant decrease in the miR-29 level beginning after 

4 hours of LPS treatment but increasing to 24 hours (Mott et al., 2010); treating human stellate 

cells with LPS strongly decreased all miR-29 family expression after 1 hour (Roderburg et al., 

2011); treating C2C12 myoblasts with TNF𝛼 substantially reduced miR-29b and miR-29c 

expression (H. Wang et al., 2008); stimulating the choroidal-retinal pigment epithelial cell line 

ARPE-19 with TNF𝛼 resulted in significant down regulation of all miR-29s; conversely, 

transfecting with a synthetic NFκB decoy, (NFκB inhibitor), rescued the downregulation of 

miR-29 by TNF𝛼 (J. Cai et al., 2014). The activation of NFκB through TLR signalling with its 

three binding sites in the miR-29a/b1 cluster promoter (-561, -110, and +134) was proven to be 

the mechanism for the suppression of miR-29a/b1 promoter function (Mott et al., 2010). In 

mice, miR-29a and miR-29b significantly decreased expression in murine natural killer (NK) 

cells stimulated with the TLR3 ligand (Poly (I:C)) or phorbol ester (PMA) as well as in 

splenocytes, NK and T cells of mice infected with L. monocytogenes or Mycobacterium bovis 

bacillus Calmette-Guérin (Ma et al., 2011). Consistent with the human miRNA, a region about 

25 kb upstream of the murine promoter of miR-29a/b1 contains two NFκB binding sites. The 

second binding site is more conserved between humans and mouse and it has been shown to be 

key for suppression of the miR-29a/b1 promoter (Ma et al., 2011). 

Importantly, other transcriptional factors, co-operating with NFκB to suppress or induce 

miR-29 family expression, have also been reported e.g., YY1, Sp1, Ezh, H3K27, HDAC1, 

HADC3, Mef2, SFR. Forced expression of YY1 in C2C12 lead to a 2-fold decrease of miR-

29b and miR-29c levels; similarly, siRNA knockdown of YY1 significantly enhanced 

expression of miRNA expression. ChIP analysis showed that YY1 did not bind to the miR-

29b2/c locus in cells in the absence of NFκB, suggesting that both pathways are necessary for 

silencing the miR-29b2/c locus. Amongst 4 putative binding sites of YY1 in highly a conserved 

region ~20kb upstream of miR-29b2/c, only one site is bound by YY1 on ChIP assay whereas 

all 4 sites produced a binding complex with EMSAs using nucleus extract from C2C12. 

Notably, Ezh, H3K27, HDAC1, whose expression is associated with repression of muscle-
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specific genes, and recruited by YY1, was also detected by ChIP assay. In the line of these 

transcription factors, Mef2 and SFR, well-known for activating muscle genes, were also found 

to bind to the miR-29b2/c promoter. Again using luciferase reporter assay, a reporter containing 

a 4.5 kb fragment spanning YY1, Mef2, SFR binding sites was repressed by YY1 or loss of the 

YY1 binding site but stimulated with either YY1 knockdown or SRF or Mef2 (H. Wang et al., 

2008). In addition, forced expression of Sp1 or NFκB (p65) reduced miR-29b expression; 

conversely, knockdown of Sp1 or NFκB (p65) by siRNAs resulted in induced miR-29b level 

(Liu et al., 2010). EMSA assay using probes spanning the -125/-75 miR-29b sequence yielded 

two major complexes, suggesting Sp1/NFκB acts as a repressive complex interacting with an 

element of the miR-29b enhancer (Liu et al., 2010). Interestingly, histone deacetylase (HDAC) 

1 and 3 contribute to the repressor activity of Sp1/NFκB on miR-29b expression (Liu et al., 

2010). Incubation of HDAC1/HDAC3 with the 32P-labelled probe from the miR-29a/b1 cluster 

region together with NFκB p50/p65 and Sp1 showed a delayed and more intense band; 

HDAC1/3 inhibitors increase miR-29b expression, supporting the interaction of HDAC1 and 3 

and Sp1/NFκB with the miR-29b regulatory sequence (Liu et al., 2010). 

8. Hedgehog signalling 

Similar to other signaling mentioned previously, the hedgehog signaling pathway was 

also shown to repress miR-29 expression: cells treated with cyclopamine, an inhibitor of 

Smoothened (a hedgehog signaling component), or transfected with siRNA to knockdown Gli-

3, the expression of miR-29b increased (Mott et al., 2010). Along with the transcription factors 

mentioned above, there are other transcriptional factors controlling miR-29 family expression. 

The serum alpha-fetoprotein (AFP), a membrane-secreted protein associated with poor patient 

outcome in hepatocellular carcinoma, was reported to inhibit miR-29a expression through 

facilitating c-MYC binding to the promoter of the pri-miR-29a/b. This conclusion was 

supported by the inability of AFP to decrease the miR-29a level in the absence of c-MYC 

protein; c-MYC was abundantly bound to the miR-29a/b1 promoter in the presence of AFP, but 

did not bind without AFP (Parpart et al., 2014); c-MYC promoter binding protein (MBP), 

originally described to bind to and repress c-MYC promoter function, up-regulated miR-29b 

expression by 6 fold in prostate cancer cells (Steele, Mott, & Ray,  2010).  The hematopoietic 

master transcription factor, CCAAT/enhancer-binding protein-𝛼 (CEBPA), was also reported 

to activate the expression of miR-29a and miR-29b. Forced expression of CEBPA in acute 

myeloid leukaemic cells leads to two-fold induced expression of the primary miR-29a/b1 and 

the mature miR-29a and miR-29b whereas the expression of miR-29b2/c primary transcript 

remained stable. Using luciferase reporter assays, the sequence, having the conserved region 

spanning -682 bp upstream to +296 bp downstream of the miR-29a/b1 transcriptional start site 

and containing 6 potential CEBPA sites, was also strongly induced with CEBPA. Among these 

binding sites, the one located at +15 to +29 bp was identified to be responsible for CEBPA-

mediated activation of the pri-miR-29a/b1 promoter on ChIP assay (Eyholzer et al., 2010). 

Another transcriptional factor, GATA3, specifying and maintaining luminal epithelial cell 

differentiation in the mammary gland, was also found to induce miR-29 expression directly by 

binding to three GATA3 sites in the miR-29a/b1 promoter. Interestingly, GATA3 can induce 

miR-29s expression by inhibiting the TGFβ and NFκB signaling pathways. Additionally, 

STAT1 (signal transducer and activator of transcription) a transcription factor induced by 
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interferon 𝛾 signalling, was reported to upregulate primary 29a/b1, the pre-29a, pre-29b1, and 

the mature miR-29a, miR-29b in melanoma cell and T cells (Schmitt, Margue, Behrmann, & 

Kreis, 2013). 
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