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ABSTRACT
An application of the node-based smoothed finite element method (NS-FEM) for 

buckling analyses of laminated composite plates using three-node triangular elements 
is exploited in this paper. A system stiffness matrix is calculated by using the strain 
smoothing technique over the smoothing domains associated with nodes of elements. 
In order to avoid the transverse shear locking and to improve the accuracy of the 
present formulation, the NS-FEM is incorporated with the discrete shear gap (DSG) 
method together with a stabilization technique to give a so-called node-based smoothed 
stabilized discrete shear gap method (NS-DSG). The numerical results derived from 
this method are compared with the solutions available in the literature to validate their 
reliability.

	 Keywords: Laminated composite platesm, node-based smoothed finite element 
method (NS-FEM), discrete shear gap (DSG) method.

1. Introduction
In recent years, laminated plates 

made of composite materials have been 
using intensively in many engineering 
application such as aerospace, marine 
and civil infrastructure. It is hence very 
essential to develop different numerical 
methods to model these structures flexibly 
and efficiently. In the aspect of theoretical 
formulation, these numerical methods 
are often based on three following 
popular plate theories: the classical 
laminated plate theory (CLPT), the first-
order shear deformation laminated plate 
theory (FSDT), and higher-order shear 
deformation laminated plate theories 
(HSDT). In the aspects of numerical 
simulation, the low-order elements based 
on the first-oder shear deformation theory 
(FSDT) are preferred and still one of the 
most effective approaches due to their 
simplicity and computational efficiency. 
However, these FSDT-based elements often 
suffer from the shear locking phenomenon 
in the case of thin plates. To overcome it, 

various numerical techniques have been 
developed, such as the mixed formulation/
hybrid elements, the enhanced assumed 
strain (EAS) methods and the assumed 
natural strain (ANS) methods, e.g. book 
[1]. Recently, the discrete shear gap (DSG) 
method using triangular plate elements [2] 
was proposed by Bletzinger indicates that 
it can overcome shear-locking effectively. 

In the other front of development 
of numerical methods, Liu and Nguyen-
Thoi [3] integrated the strain smoothing 
technique [4] into the standard FEM to 
give a series of smoothed finite element 
methods (S-FEM). The advantage of the 
SFEM is that derivatives of the shape 
functions are not required, leading to 
lower computational cost because of the 
absence of an isoparametric mapping. 
SFEM has been developed four smoothed 
finite element methods (SFEMs) including 
a cell-based SFEM (CS-FEM) [6, 7], a 
node-based SFEM (NS-FEM) [8, 9], an 
edge-based SFEM (ES-FEM) [10, 11] 
and a face-based SFEM (FS-FEM) [12]. 
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Each of four new smoothing methods 
has different characters and advantages. 
Among of them, NS-FEM based on the 
idea of the node-based smoothed point 
interpolation method (NS-PIM) and the 
SFEM has been developed for 2D solid 
mechanics.

The aim of this paper is to describe a 
contribution to further development in this 
field, with the introduction and application 
of the node-based smoothed finite element 
method (NS-FEM) for buckling analysis 
of laminated composite plates using 
three-node triangular meshes. In order to 
eliminate shear locking, the NS-FEM is 
incorporated with the discrete shear gap 
(DSG) method to give a so-called node-
based smoothed discrete shear gap method 
(NS-DSG). The numerical results derived 
from this method are compared with the 

solutions available in the literature to 
validate their accuracy.

2. Governing Equations
Consider a laminate consisting of n 

orthotropic layers with a total thickness h. 
Let Ω be a bounded region in R2 occupied 
by the mid-plane of the plate and u0, v0, 
w0 and β = (βx,βy) denote the displacement 
components in the x, y, z directions and 
the rotations in the y-z and x-z planes, 
see Fig.1, respectively. The governing 
differential equations of the Mindlin–
Reissner plate can be expressed by [13]:

u(x,y,z)=u0(x,y)+zβx(x,y)
v(x,y,z)=v0(x,y)+zβy(x,y)
w(x,y,z)=w0(x,y)
The in-plane strain vector ɛp=[ɛxx  ɛyy  γxy]

T 
and the transverse shear strain vector can 
be rewritten as

Figure 1: Geometry of a typical Mindlin-Reissner plate

	 A weak form of the buckling model for Reissner/Mindlin composite plates can be 
briefly expressed  respectively as:

(3)
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where
 , 

 
are the gradient operator and in-plane pre-
buckling stresses, respectively and

(4)

in which A, B, Db, Ds matrices of 
extensional stiffness, bending-extensional 
coupling stiffness, bending stiffness and 
transverse shearing stiffness, respectively, 
defined as [13]

(5)

(6)
where k denotes the transverse shear 

correction coefficient and  are the elastic 
constants.

Let’s assume that the bounded domain 
Ω is discretized into nel finite elements such 
as and , i≠j. The finite 
element solution uh of a displacement model 
for the Mindlin–Reissner plate is given by:

(7)
where np is the total number of nodes, NI, 
and dI=[uI  vI  wI  θxI  θyI]

T are the shape 
function and the nodal degrees of freedom 

of u associated to node I, respectively. 
The membrane bending, shear strains and 
geometrical strains are expressed as:

(8)

(9)

where

and

(10)
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The formulation of a Reissner–Mindlin 
plate can then be obtained for buckling 
analysis has the form respectively as

                 (11)
where the global stiffness matrix

(12)

(12)

(15 )

and the global geometrical stiffness 
matrix is as follows

           (13)
in which

(14)
It is known that low-order triangular 

elements often occur shear locking in the 
limit of thin plates. Therefore, we introduce 
a simple triangular plate element NS-
DSG3 [14] that combines the node-based 
smoothed finite element method (NS-
FEM), a discrete shear gap (DSG) concept 
for shear-locking-free triangular Reissner-
Mindlin plate-bending finite element 
(DSG3), and a stabilization technique 
proposed by Lyly et al. [15] aims to further 

improve the stability and the accuracy and 
helps to eliminate the shear locking for 
laminate composite plate. 

3. The NS-FEM with Stabilized 
Discrete Shear Technique

In the NS-FEM, we do not use the 
compatible strain fields as in the standard 
FEM but use strains “smoothed” over 
local smoothing domains, and as a result 
the integration for the stiffness matrix is 
no longer based on elements, but based on 
these smoothing domains.

These local smoothing domains are 
constructed based on nodes of the elements 
such as  and , i≠j, in 
which Nn is the total number of nodes of 
all elements in the entire problem domain. 
For triangular elements, the smoothing 
domain Ωk associated with the node k is 
created by connecting sequentially the mid-
edge-point to centroids of the surrounding 
triangles of the node as shown in Fig.2. 
Introducing smoothing strains over the 
smoothing domain Ωk , one writes 

where Φ(x) is a given smoothing 
function that satisfies at least unity property

                (16)

and in this work Φ(x) is assumed to 
be a step function given by

             (17)

Where  is the area of the 
smoothing domain Ωk and computed by 

 where  is the number 
of elements connected to the node k and 

 is the area of the ith element around the 
node k. Substituting Eqs. (8) and (17) into 
(15), the smoothed strains at node k can be 
expressed in the following form:
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where  is the total number of nodes 
belonging to elements directly connected 
to node k.  and  are the smoothed 

gradient matrices through the smoothing 
domain  and are given by

(18)

(19)

(20)

(21)

(22)

(23)

where  and  are obtained from the three-node standard finite element

while  is derived from the discrete shear gap technique [2]

and  has the following form
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with a = x2 - x1, b = y2 - y1, c = y3 - y1, 
d = x3 - x1, ((xi, yi), i=1,2,3 are three vertical 

coordinates of element), see Fig.3 and Ae 
is the area of triangular element. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

k  kW  

kΓ  I  

J  

P  

○ Field node ( qk, )；◇ Mid-edge-point ( P );  △ Centroid of triangle ( JI , ) 

q  

Figure 2: Three-node triangular mesh and smoothing domains

Figure 3: Three -node triangular element

Therefore the global stiffness and geometrical stiffness matrices of the NS-DSG3 
element are assembled by

where the nodal stiffness matrix  of the NS-DSG3 element is given by 

(24)

(25)

(26)

It was mentioned that a stabilization 
technique [15] needs to be added to the 
DSG3 element to improve significantly 
approximate solutions and to avoid shear 

force oscillations presenting in the case 
of triangles. For this remedy, the nodal 
stiffness matrix of the NS-DSG3 element 
can be also modified as 
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in which 

              (27)

where  is the average 
length of the smoothing domain Ωk and 

 is a arbitrary positive 
constant. It is fixed α = 0.05.

4. Numerical Results
Some numerical examples are 

presented to compare with the other 
solutions in the analysis buckling of 
laminated plates. In all the following 
examples, all layers of the laminated plate 
are assumed to be of the same thickness, 
mass density, and made of the same linearly 
elastic composite material. The material 
properties are assumed: E1/E2 = 40; G12 = 
G13 = 0.6E2, G23 = 0.5E2; n12 = 0.25, r = 1.

Unless otherwise stated, the shear 
correction factor k = p2/12 is used for all 
computations and the buckling load factor 
is defined as . Where a, h 
and lcr are the edge length, thickness of the 
composite plate and the critical buckling 
load, respectively.

4.1. Square Plate under Uniaxial 
Compression

Let’s first consider a simply supported 
four-layer cross-ply [00/900/900/00] square 
laminated plate with the length a and 
the thickness h subjected to uniaxial 
compression as shown in Fig.4a. In this 
problem, we study the effect and accuracy 

of NS-DSG3 for various modulus ratios. 
The length-to-thickness ratio of the plate 
a/h is taken to be 10. Table 1 presents the 
convergence of the normalized critical 
buckling load of a simply supported four-
layer cross-ply [00/900/900/00] square 
laminated with the various modulus ratios. 
The results of the present method are 
compared with the 3D elasticity solution 
[16], RPIM solution based on FSDT 
[17] and FEM solution based on HSDT 
[18, 19]. It can be seen that the present 
results agree well with those solutions 
and the normalized critical buckling 
loads increase with increasing of the 
E1/E2 modulus ratios. Comparing with 
the reference solution obtained in 3D 
elasticity, it is observed that the NS-DSG3 
solution is quite insensitive to the variation 
of modulus ratios as seen in Fig.5.

Next, the effect of the length-
to-thickness ratio a/h on the uniaxial 
compression load is also considered for 
two and four layer simply supported cross-
ply square plates. The normalized critical 
buckling load of the present method is 
compared with the solutions in Nguyen et 
al. [20], Chakrabarti and Sheikh [21] and 
Reddy and Phan [22]. Table 2 shows the 
normalized critical buckling load of two 
and four layer simply supported plate. 
It is seen that the present result gives a 
good agreement with available solutions 
and the normalized critical buckling load 
decreases with the decreasing length-to-
thickness ratio a/h.

Table 1: A normalized critical buckling loads of simply supported cross-ply 
[00/900/900/00] square plate with various E1 / E2 ratios.

Methods Mesh
E1 / E2 

3 10 20 30 40

NS-DSG3

  8 x 8 5.6227 10.3599 15.9163 20.4334 24.2024

12 x 12 5.4528 10.0596 15.4829 19.9084 23.6136

16 x 16 5.3939   9.9552 15.3313 19.7238 23.4055
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Noor [16] 5.294   9.761 15.019 19.304 22.88

RPIM [17] 5.401   9.985 15.374 19.537 23.154

HSDPT [18] 5.114   9.774 15.298 19.957 23.34

HSDT [19] 5.442 10.026 15.418 19.813 23.489

Table 2: A normalized critical buckling loads of simply supported cross-ply 
square plate with various a/h ratios.

Number layer Methods	
a/h

10 20 50 100

[00/900] MISQ20 [20] 11.169 12.52 12.967 13.033

FSDT (Chakrabarti et al.) [21] 11.349 12.51 12.879 12.934

FSDT (Reddy and Phan) [22] 11.353 12.515 12.884 12.939

HSDT (Reddy and Phan) [22] 11.563 12.577 12.895 12.942

NS-DSG3 (16 x 16) 11.2445 12.6172 13.0723 13.1433

[00/900/900/00] MISQ20 [20] 23.236 31.747 35.561 36.19

FSDT (Chakrabarti et al.) [21] 23.409 31.625 35.254 35.851

FSDT (Reddy and Phan) [22] 23.471 31.707 35.356 35.955

HSDT (Reddy and Phan) [ 22] 23.349 31.637 35.419 35.971

NS-DSG3 (16 x 16) 23.4055 32.0186 35.8846 36.5222

Figure 4: Geometry of laminated composite plates under axial
and biaxial compression

(a) (b)
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We also consider the influence of 
the mixed boundary conditions of two 
layers cross-ply square plate with length-
to-thickness ratios a/h = 10 and modulus 
ratios E1/E2 = 40. Table 3 shows  the 
normalized critical buckling load factors 
with various boundary condition SSSS, 
SSFF, SSCC, SSFC and SSFS plates. It 

can be seen that the NS-DSG3 works well 
compared with several other methods 
such as MISQ20 [20], the moving least 
square differential quadrature method 
(MLSDQ) [23], the meshless method 
using FSDT (RKPM) [24] and FEM 
[25]. The buckling mode shapes are also 
displayed in Fig.6.

Figure 5: Effect of modulus ratios on the accuracy of critical buckling loads

Table 3: A normalized critical buckling loads of cross-ply [00/900]  
with various mixed boundaries (E1 / E2 = 40; a/h = 10)

Methods Boundary conditions

SSSS SSFF SSCC SSSC SSFC

MISQ20 [20] 11.291 4.86 20.082 16.47 6.14

MLSDQ [23] 11.301 4.823 19.871 - -

RKPM (Wang et al., 2002)[24] 11.582 4.996 20.624 16.872 6.333

FSDT (Reddy and Khdeir) [25] 11.353 4.851 20.067 16.437 6.166

HSDT (Reddy and Khdeir) [25] 11.562 4.94 21.464 17.133 6.274

NS-DSG3 (8 x 8) 11.6878 4.8319 20.9502 16.5550 6.2592

NS-DSG3 (12 x 12) 11.3587 4.8144 20.0564 16.2743 6.1721

NS-DSG3 (16 x 16) 11.2445 4.8058 19.7551 16.1798 6.1377

Figure 6: Buckling mode shapes of [0/90] 
laminated plate with various 

boundary conditions

(a) SSSS
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(b) SSFF(b) SSFF

(d) SSSC (e) SSFC

(c) SSCC

4.2. Square Plate under Biaxial 
Compression

The final example considers the 
3-layer symmetric cross-ply [00/900/00] 
simply supported plate subjected to the 
bi-axial buckling load as shown in Fig.4b. 
The span-to-thickness ratio a/h is taken to 
be 10 and the modulus ratios E1/E2 = 40. 

The effect of modulus ratio E1/E2 on the 
critical bi-axial buckling load is studied in 
this section. Table 4 shows the normalized 
critical buckling loads. It can be seen that 
the present element provides reasonable 
results compared with other published 
methods.

Table 4: Biaxial buckling of simply supported cross-ply [00/900/00] 
square plate with various modulus ratio.

Methods
E1 / E2

10 20 30 40

HSDT (Khdeir and Librescu) [19] 4.963 7.516 9.056 10.259

FSDT (Fares and Zenkour) [26] 4.963 7.588 8.575 10.202

MISQ20 [20] 4.939 7.488 9.016 10.252

NS-DSG3 (8 x 8) 5.1316 7.7686 9.7658 11.1039

NS-DSG3 (12 x 12) 4.9820 7.5540 9.1805 10.4296

NS-DSG3 (16 x 16) 4.9299 7.4788 8.9728 10.2010

5. Conclusion
In this paper, an application of the 

node-based smoothed finite element 
method with discrete shear gap technique 
has been presented for buckling analyses of 

laminated composite plates based on FSDT 
to give a so-call node-based smoothed 
discrete shear gap method (NS-DSG). The 
results of the NS-DSG3 element showed 
that it can outperform several reference 
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3-noded triangular elements and can 
provide more reliable results compared 
to other published methods. The present 

method is thus very promising to provide 
a simple and effective tool for buckling 
analysis of composite plate structures. 
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