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ABSTRACT
In this paper, a time step integration method for resolving the differential 

equation of motion of discrete structures subjected to dynamic loads is presented. 
This method is derived based on the approximation of acceleration in two time steps 
by a combination of both trigonometric cosine and hyperbolic cosine functions with 
weighted coefficient. The necessary formula of the present method is elaborated for 
integrating of the governing equation of motion in structural dynamics. The accuracy 
and stability of the present method are also studied. The numerical results are 
compared with those obtained using Newmark method, linear acceleration method, 
showing high effectiveness of the new method. 

Keywords: Numerical method, equation of motion, time step, acceleration, accuracy.

1. Introduction
For many structural problems, the 

evaluation of a structure using a static 
analysis may not be sufficient to obtain 
the actual response of the system; in this 
case dynamic analysis would be necessary 
[7, 13, 14]. Examples belong to diverse 
fields of structural dynamic problems 
such as infrastructures, buildings, offshore 
under dynamic loads derived from moving 
vehicles, landing impact upon aircraft, 
and natural causes such as wind, wave, 
and earthquake, etc. With mathematical 
models established from real structures, 
the governing equation can be obtained 
based on the balance of forces at time  i 
for each degree of freedom [1]. To solve 
this problem, the governing equation 
of motion descretized by finite element 
methods becomes the second order 
ordinary differential equation. Due to the 
complexity of these equations, analytical 
solutions can only be obtained for a 
handful of simple problems [14]. Up to 
now, solutions to the equation of motion 
in the time domain are most conveniently 
obtained by computational techniques. 
Traditionally, time step integration methods 

are widely used in the framework of 
dynamic problems [2, 3, 5, 6] and others. 

 In the past several decades, several 
of time step integration methods have 
been introduced. In 1959, Newmark [10] 
introduced the family methods based on 
the variation of acceleration in each time 
step, which is well - known, in the field 
of dynamic analysis. Bathe and Wilson 
(1973) proposed the Wilson q method 
and evaluated the accuracy, stability of 
solutions [1]. Hilber, Hughes, Taylor 
(1976) presented a method based on the 
equilibrium collocation, one parameter 
family of algorithms, higher order one step 
algorithms [7]. In 1980s, many authors 
suggested algorithms that can improve 
the effectiveness of computational process 
such as Hoff, Pahl (1988) with the implicit 
method with six free parameters q1, q2, 
q3, b, g, h [8]. Recently, many authors 
developed the algorithms such as Hulbert,  
Mugan (2001) with the generalized a 
algorithm applied time domain, frequency 
domain and automatically chosen time step 
size; Fung (2003) with complex time step, 
higher order algorithms [5]; Xiaoqin Chen 
(1994) with Virtual Pulse method based 
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on a unique theoretical perspective with 
virtual displacement fields; Walker (2003, 
2005) with higher order explicit - implicit 
algorithms by polynomial expressions to 
derive the final velocity and displacement 
equations [12, 13]; the higher - order 
accurate and unconditionally stable time-
integration method by Kim et al. (1997) 
[9]; a nonlinear integration formula for 
ODEs proposed by Sivakumar et al. (1996) 
[12]; the combination of Newmark method 
and Wilson method applied in nonlinear 
problems used in ADINA software is 
introduced by Bathe (2005) [2]. From the 
above-listed methods, it can be seen that 
accurate and robust time step integration 
methods have been the focus of studies for 
fifty years, and are still under development.

With the assumption of variation of 
acceleration in two time steps by known 
nonlinear functions, implicit algorithms 
can be developed for equation of motion 
in structural dynamic problems. The 
objective of this paper is to deal with a 
new time step integration method for 
solving the equation of motion in structural 
dynamics. This method is derived based 
on the approximating acceleration by the 
combination of both trigonometric cosine 
and hyperbolic cosine functions with 
weighted coefficient in two time steps. 
The accuracy and stability of the proposed 
method are also studied. The numerical 
results for a single degree of freedom 
(DOF) system subjected to periodic loads 
with various frequencies are studied to 
verify the effectiveness of the new method.

2.  Formulation 
2.1.  Equation of Motion
The governing equation of motion 

of a descretized structural model can be 
written as follows 

(fI)i + (fD)i + (fS)i = Pi            (1)
Here the vectors (fI)i, (fD)i, (fS)i and 

Pi  are inertia force, damping force, spring 
or elastic force and external load vectors 
at time i, respectively. The external force 
is given by a set of discrete values Pi = 
P(ti), i=0, 1, ..., n. Time step Δt = ti+1 - ti is 
usually taken to be constant. The response 
is determined at the discrete time ti, and 
denote ui,  and üi, respectively, the 
displacement, velocity and acceleration 
vectors as time i. 

For linear dynamic problems, Eq. (1) 
can be represented as

Müi + C  + Kui = Pi             (2)
where M, C and K are the mass, 

damping, and stiffness matrices, 
respectively. Consequently, the response 
of the system at time i + 1 can be described 
as follows

Müi+1 + C  + Kui+1 = Pi+1       (3)

2.2. Time Step Integration Method 
In this study, a new formulation of 

solving Eq. (2) is proposed by using a step by 
step integration technique. The acceleration 
function in two time steps is assumed by 
the combination of both trigonometric and 
hyperbolic cosine functions as shown in 
Figure 1 expressed as 

where Δt is the time step size, the time 
variable is ; the acceleration 
vectors at the times t-Δt,t,t+Δt are defined 
as üi-1, üi, üi+1, respectively; and Ɵ the 

weighted coefficient of trigonometric and 
hyperbolic cosine functions. It can be seen 
that Eq. (4) satisfies at time τ = -Δt, τ = 0, 
τ = Δt as follows

(4)
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Taking integration of Eq. (4), the resulting velocity equation can be expressed as

(5)

Figure 1: The variation of acceleration in two time steps

Similarly, the displacement equation can be expressed by

(6)

(7)

 When τ = Δt, the velocity and displacement vectors at the end time step are given as
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Substituting Eqs. (8), (9) into Eq. (3), 
the expression of the unknown üi+1 can be 
obtained. Consequently, the velocity and 
displacement vectors at the end of time 
interval are determined by Eqs. (8), (9), 
respectively. The above-described process 
may be repeated to compute the dynamic 
response for subsequent discrete times. 

2.3.  Stability Analysis
The numerical stability of the 

numerical method is normally studied 
based on the mathematical theory. In this 
paper, the roots of the linear difference 
equation are applied to analyze the stability 
of the suggested method. Consider the 
linear difference equation as follows

anun + an-1un-1 + ... + a1u1 + a0u0 = 0
(10)

in which a1, a1, ..., an are constant 
coefficients. The auxiliary equation of Eq. 
(10), polynormial of variable λ, can be 
expressed as

anλ
n + an-1λ

n-1 + ... + a1λ + a0 = 0
(11)

The roots of the auxiliary Eq. (11), 
λ1, λ2, ..., λn provide the values of which λ1, 
λ2, ..., λn are needed to find ui in accordance 
with Eq. (10). 

 The general solution of the linear 
difference equation can be determined as

i = 0, 1, ..., ∞         (12)
in which C1, C2, ..., Cn are arbitrary 

constants to be determined from the 
specified initial conditions. Now 
investigating the stability of a method is 
based on the roots of the auxiliary equation 
λ1, λ2, ..., λn. Let r(ë) be the spectral radius 
of the roots of the auxiliary λk, defined as

r(ë) = max{rk}
k = 1, ..., n               (13)
where rk are identical to the modulus 

of λk and determined as follows
rk=|λk|           (14)
with r(ë) are real or complex values
Time integration methods are 

unconditionally stable if the solution 
for any initial conditions does not grow 
without bound for any time step, in 
particular when time step is large. The 
method  is conditionally stable if the 
same only holds provided time step is 
smaller than a certain value.  It can be 
seen that ui  is bounded for i→∞ if and 
only if r(ë)≤1, and the solution is said 
stable, otherwise, the solution is unstable. 
Consequently, r(ë)=1 is considered as 
the stability limit criterion. 

To study the stability properties 
of the formulae (8), (9), let us consider 

 (8)

 (9)
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the free vibration response of a linear, 
undamped, single degree of freedom 
system governed by the following 
differential equation as follows

ü + ω2u = 0        (15)
where ω is the circular natural 

frequency. From the Eq.(9), application 
for the next time step gives as

(16)

(17)

(18)

(19)

(20)

 From the Eqs. (8), (9) and (16),  the velocity vectors iu and 1+iu  are eleminated

By the substituting Eq. (15) into Eq.(17), the following difference equation is 
obtained as

in which Ω = ωΔt 
Using cosh(1)=1.5430806; sinh(1)=1.1752012; π=3.141592654, Eq. (18) becomes

This is homogeneous linear difference equation of third order. Consequently, the 
auxiliary equation of Eq. (19) can be written to be
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The roots of Eq. (20), λ1, λ2 and λ3 are found and the spectral radius of the roots can 
be expressed in the table bellow

Table 1: The spectral radius with various time steps

2W
t

T
∆

≈ 0=q 2.0=q 4.0=q 6.0=q 8.0=q 1=q

0.05 28 1 1 1 1 1 1

0.10 20 1 1 1 1 1 1

0.20 14 1 1 1 1 1 1

0.3 11 1 1 1 1 1 1

0.4 10 1.00003 1.00003 1.00003 1.00003 1.00003 1.00003

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Based on Table 1,  it is seen that the 
new method is conditionally stable. The 
expression gives the condition for the 
stability as

2.4.  Accuracy Analysis
Based on the Taylor series expansion 

of the acceleration function at time i, the 
expansions of acceleration at the time i+1 
and i-1 can be determined as follows(21)

(22)

(23)

(24)

(25)

(26)

Substituting Eq. (22) into Eqs. (8), 
(9), the velocity and displacement at the 

end time interval of the suggested method 
may be expressed as 

The Taylor series expansions of 
velocity and displacement at the end of 

time interval about at time i can be obtained 
as follows
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Hence, the principal errors of 
velocity and displacement at the end 

time interval of the new method are 
given as follows

(27)

(28)

(29)

(30)

For the comparison purpose, 
the truncation errors of velocity and 
displacement equations of Newmark 

method, linear acceleration method, are 
given as follows

 It can be clearly seen that the 
proposed method is in good agreement 
with the Taylor series expansion up to 
the third order term of displacement or 
fourth order term based on the weighted 
coefficient θ.

In order to test the effectiveness of the 
presented formulation, a single degree of 
freedom systems is carried out in the next 
section. The comparison of the accuracy 
and convergence are given to illustrate the 
performance of the proposed method. 

3. Numerical Example 
The governing equation of motion of 

a single DOF system under periodic load 
is given as follows

(31)
with mass m = 1kg, natural frequency 

ω = 2πrad/s, damping ratio ζ, forcing 
amplitude and frequency p0=5N and ωf, 
ratio of frequencies , initial conditions 

u(0)=0, (0)=0. The solutions of this problem 
are solved by analytical (exact) solution, 
Newmark solution (linear acceleration 
method), and suggested method. 

For comparison goals, two parameters 
of the error are defined as follows:

The error of peak displacement 

 
and

The average error per time step

Where A,  are the peak displacements 
of the calculated approximate solution and 
exact solution, ui,ūi are the displacement 
of the calculated approximate solution 
and exact solution, and N is number of 
time steps. 

Two cases with various damping 
ratio z and ratio of frequencies b are 
carried out as follows:

1. Given b =1.05; and z= 5%, 
the results including time history of 
displacement of exact solution, Newmark 
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solution, and suggested solution with 

time step ; error of peak 
displacement with various time steps from 

 
to ; and average error per time 

step with various weighted coefficients are 
shown in Figures 2, 3, 4. 

2. The input data of the single degree 
of freedom system is given as b =1.05; 
and z = 5%.  The results are presented in 
Figures 5, 6, 7.

 Figure 2 shows the displacements 
of single degree of freedom system. 
Comparing to the exact solution, it can 
be seen that the present method gives 
very accurate solution. The result of 
convergence study is shown in Figure 4; 

the error of peak displacement derived 
from Newmark and suggested methods 
with various time steps are presented. This 
indicates that solutions obtained using the 
proposed method are more accurate than 
those obtained using Newmark method 
when the same time step is used. The 
best weighted coefficient is checked by 
numerical example; the survey of average 
error with the computational procedure 
about 18 periods in this example is 
expressed as Figure 3. It can be seen 
that the best weighted coefficient is the 
same as accuracy analysis section.  The 
same comments are similar in the second 
example indicated in Figures 5, 6, 7.

Figure 2: Displacement of SDOF system with β =1.05; ζ= 5%; Δt = 0.0952 s = T/10

Figure 3: The average error per time 
step with Δt = 0.0474 s = T/20

Figure 4: The error of peak displacement
with various time steps
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4. Conclusion
The numerical method of time step 

integration for the equation of motion in 
discrete structures under dynamic loads 
has been presented. The computational 
procedure of this method has been 
obtained from the approximation of 
acceleration in two time steps. The 
theoretical developments of this method 

included a detailed analysis of the stability, 
accuracy. The improved accuracy of this 
method based on the truncation errors 
from the Taylor series expansion was 
clearly evident from the theoretical 
developments. The numerical examples 
show that the computational performance 
of the present method is superior for 
dynamic problems.

Figure 5: Displacement of SDOF system with β =1.5; ζ = 15%; Δt = 0.1s = T/6.666

Figure 6: The average error per time 
step with Δt = 0.066 s = T/10

    Figure 7: The error of peak 
displacement with various time steps

REFERENCES
1. Bathe, K. J., and Wilson, E. L. (1973), “Stability and accuracy of direct integration 

methods”, Earthquake Engineering and Structural Dynamics, 1, pp. 283-291.
2. Bathe, K. J., Irfan Baig, M. M. (2005), “On a composite implicit time integration 

procedure for nonlinear dynamics”, Computers and Structures, 83,  pp. 2513-2524
3. Do Kien Quoc, Nguyen Trong Phuoc (2005), “Solving dynamic equation 

using combination of both trigonometric and hyperbolic cosine functions for 
approximating acceleration”, Journal of the Mechanical Science and Technology, 
19 (special edi.), pp. 481-486.

38 Ho Chi Minh City Open University Journal of Science- No. 1(1) 2011



4. Do Kien Quoc and Nguyen Trong Phuoc (2006), “A time step algorithm for dynamic 
analysis of structures due to earthquake”, Proc. of the 10th East Asia-Pacific Conf. 
on Structural Engineering and Construction - EASEC10, 3. Wind and Earthquake 
Engineering, Thailand, pp. 429-434.

5. Fung, T.C. (2003), “Numerical dissipation in time step integration algorithms for 
structural dynamic analysis”, Prog. Struct. Engng. Mater., 5, pp. 167-180.

6. Hahn G. D. (1991), “A modified Euler method for dynamic analyses”, International 
Journal for Numerical Methods in Engineering, 32, pp. 932-955

7. Hilber, H. H. (1976), “Analysis and Design Time Integration Methods in Structural 
Dynamics”, Report EERC 76-29, College of Engineering, University of California, 
Berkeley.

8. Hoff, C, and Pahl, P. J. (1988), “Development of an implicit method with numerical 
dissipation from a generalized single step algorithm for structural dynamics”, 
Computer Methods in Applied Mechanics and Engineering, 67, pp. 67-385.

9. Kim S. J., Cho J. Y. and Kim W. D. (1997), “From the trapezoidal rule to higher-order 
accurate and unconditionally stable time-integration method for structural dynamics”, 
Computer Methods in Applied Mechanics and Engineering, 149, pp. 73-88.

10. Newmark, N. M. (1959), “A method of computation for structural dynamics”, 
Journal of Engineering Mechanic Division, Proceedings of the ASCE, pp. 63-95.

11. Sivakumar T. R., Savithri S. (1996), “A new nonlinear integration formula for 
ODEs”, Journal of Computational and Applied Mechanics, 67, pp. 291-299.

12. Walke, Keierleber Colin (2003), Higher-order Explicit and Implicit Dynamic Time 
Integration Methods, Ph. D. Dissertation, University of Nebraska, USA. 

13. Walker K. C., Rosson B. T. (2005), “Higher-order implicit dynamic time integration 
method”, Journal of Structural Engineering, ASCE, 131, pp. 1267-1276.

14. Wang M., Au F. T. K. (2006), “Assessment and improvement of precise time step 
integration method”, Computers and Structures, 84, pp. 779-786.

39Ho Chi Minh City Open University Journal of Science- No.1(1) 2011




