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ABSTRACT
An equilibrium Element-Free Galerkin (EFG) based formulation for limit analysis 

of rigid-perfectly plastic plane strain problems is presented. In the formulation pure 
stress fields are approximated using a moving least squares technique, and a stabilized 
conforming nodal integration scheme is used in combination with the collocation 
method, ensuring that the equilibrium equations only need to be fulfilled at the nodes 
and instability problems can be eliminated. The von Mises yield criterion is enforced 
by introducing second-order cone constraints, ensuring that the resulting optimization 
problem can be solved using efficient interior-point solvers. Finally, the efficacy of the 
procedure is demonstrated by applying it to a benchmark Prandtl problem. 

Keywords: Limit analysis, meshless methods, EFG, equilibrium model, second-
order cone programming.

1. Introduction
The load required to cause collapse 

of a body or structure can be estimated 
using lower bound theorem. In FEM-
based numerical lower-bound limit 
analysis problem, a statically admissible 
stress for an individual element is chosen 
so that equilibrium equations and stress 
continuity requirements within the element 
and along its boundaries are met. This 
results in difficulties in building stress-
based elements, and consequently stress-based 
elements are not popular compared with 
displacement - based elements. However, 
in this paper we will show that when a 
moving least squares approximation is 
used to construct stress fields, the field 
obtained is smooth over the entire problem 
domain. There is therefore no need to 
enforce continuity conditions at interfaces 
within the problem domain, which would 
be a key part of a comparable finite element 
formulation.

The equilibrium equations are 
frequently treated in one of two ways in 
numerical procedures: (i) equilibrium is 
enforced at nodes in the problem domain and 

also at boundaries (using the ‘collocation’ 
method), or (ii) the equilibrium equations 
are transformed into the equivalent weak-
form (involving integrals), using the so-
called ‘weighted residual method’ [1, 2]. 
The former method is simple and fast, but it 
has been reported to suffer from numerical 
stability problems [2, 3]. In contrast, 
formulations which use the weak-form can 
usually produce a stable set of discretized 
system equations, in turn leading to 
accurate solutions. Finite element based 
formulations have been developed 
by several authors [4, 5]. Considering 
meshfree methods, an equilibrium model for 
elastostatic problems was first introduced 
in [6], where stress fields were expressed 
by means of an Airy stress function, 
approximated using the moving least 
squares method. However, in this paper an 
alternative EFG equilibrium formulation 
in which the collocation method is used in 
combination with a smoothing technique 
is proposed.

2. Static Limit Analysis Formulation
A lower-bound solution to the problem 

involving a rigid-perfectly plastic body can 
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be obtained by using the static theorem of 
plasticity, which states that a stress field is 
statically and plastically admissible if (i) 
equilibrium and boundary conditions are 
fully satisfied, and (ii) the yield condition 
is not violated anywhere. The exact 
plastic collapse load multiplier, λp, is the 
largest value among a set of lower bound 
multipliers, λ-, corresponding to any 
statically and plastically admissible stress 
distribution. The stress field is denoted as 
σ=[σxx σyy σxy]

T and is constrained to belong 
to the domain

B = {σ|ψ(σ)≤0}, (1)

in which the so-called yield function 
ψ(σ) is convex.

For plane strain problems, the von 
Mises failure criterion is expressed as

(2)
where σ0 is the yield stress.
Finally, the lower-bound limit analysis 

of plane problems can be expressed in 
the form of a mathematical programming 
problem, as

      (3) 
     (4) 

               (5) 
where λ-  is the numerically computed 

load multiplier,  , and the 

stress field σ must also satisfy appropriate 
boundary conditions.

3. The EFG Equilibrium Model
3.1. Moving Least Squares Approxi-

mation
Whereas in the kinematic formulation 

the displacement field is approximated, here 
the stress field needs to be approximated. In 
[6] the stress fields were expressed by means 
of an Airy stress function approximated 

using the moving least squares method. 
However, here these stress fields can be 
approximated directly by 

  
 (6)

 in which 

(7) 

(8)

(9)
where n is the number of nodes; p(x) 

is a set of basis functions; wI(x) is a weight 
function associated with node I. In this 
work, an isotropic quartic spline function 
is used, which is given by

 

 
(10)

with , where RI is the 

support radius of node I and determined by  
RI = β.hI    (11)
where β is the dimensionless size 

of influence domain and hI is the nodal 
spacing when nodes were distributed 
regularly, or the maximum distance to 
neighbouring nodes when nodes were 
distributed irregularly, see [7] for details.

3.2. Stabilized Equilibrium Equation
A stabilized conforming nodal 

integration (SCNI) scheme [8] will be 
adapted in order to stabilize problems 
involving stress derivatives as follows 
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(12)

where  is the smoothed value of the 
first-derivative of stress  at node j; Гj  
and aj are the boundary and area of the 
representative domain of node j.

 Now introducing a moving least 
squares approximation of the stress fields, 
the smooth version of the stress first-
derivative can be expressed as

(13)
 with

(14)
where  is the smoothed version 

of Φ, which can be determined using the 
technique presented in [9]

With the use of the smoothed value 
 the equilibrium equation can be 

enforced at n nodes, and Equation  can be 
rewritten as 

(15)

(16)
where

(17)

 
(18)

(19)

(20)

(21)
4. Solution of The Discrete Problem
4.1. Second-Order Cone Constraints
In this section, the von Mises 

criterion, Equation , will be formulated in 
the form of a standard second-order cone

(22)
If introducing a vector of additional 

variables ρ as

(23)
equation  can be rewritten as

 
(24)

where L is the three-dimensional 
quadratic cone.

4.2. Limit Analysis Formulation
The limit analysis formulation can 

now be expressed in the form of a standard 
second-order cone programming problem as

λ- = max λ

(25)
where np is the number of yield points.
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Using the existing Voronoi cell geometry, 
the yield condition can conveniently be 
enforced at vertex points within Voronoi 

cells, as well as at nodes, as indicated in 
Figure 1. 

Figure 1: Locations of yield points (at nodes and elsewhere within Voronoi cells)

It should be emphasized that the 
collapse multiplier λ- determined using 
the described procedure is not guaranteed 
to represent a strict lower-bound on 
the exact value. This is because the 
smoothed moment derivative field may 
not fully satisfy equilibrium conditions 
everywhere in the domain, and because 
the yield condition is only enforced at a 
limited number of points. However, as 
the numerical discretization becomes 
increasingly fine one can expect to achieve 
an increasingly reliable approximation of 
the actual collapse load multiplier.

5. Numerical Examples
The performance of the limit analysis 

procedure described will now be tested 
by examining the classical plane strain 
problem, as shown in Figure 2. For a load 
of 2τ0, the analytical collapse multiplier is 
λ = 2 + π = 5.142. The strong discontinuity 
at the edge of the indentor presents a 
severe challenge to many numerical 
analysis procedures. Problems were setup 
using MATLAB and the Mosek version 
5.0 optimization solver was used to obtain 
all solutions. 

Figure 2: Prandtl problem: geometry and loading

26 Ho Chi Minh City Open University Journal of Science- No.1(1) 2011



Due to symmetry, only half the domain 
needs to be considered. A rectangular 
region of dimensions B=5 and H=2 was 
used and the indentor (or ‘punch’) was 

represented by a uniform vertical load. 
Finally, appropriate boundary conditions 
were imposed, all as indicated in Figure 3. 

Figure 3: Prandtl problem: nodal layout, Voronoi cells  
and displacement boundary conditions

 Collapse multipliers and associated 
errors for various meshes are shown 
in Table 1. It can be observed that the 
solutions obtained using the present 
method show a very good accuracy when 
compared with the analytical solution. 
For all meshes, the relative errors to 

the exact solution are smaller than 1%. 
Furthermore, all the solutions obtained 
are below the exact value. This indicates 
that the presented procedure is capable 
of producing lower bound on the actual 
collapse load multiplier.   

Table 1: The punch problem: collapse multiplier

Models
Number of nodes

189 697 2673 5929

Proposed method 5.1123 5.1192 5.1312 5.1372

Error (%) -0.58 -0.44 -0.21 -0.09

Table 2 compares solutions obtained 
using the present method with upper and 
lower bound solutions that have previously 
been reported in the literature. The present 
results are proved to be competitive with 

those obtained by other methods, despite 
the fact that the number of nodes used 
in the present method is relatively small, 
compared with other methods.   

Table 2: Collapse load multiplier compared with previously obtained solutions

  Approach Authors Collapse multiplier  Error (%)

 Kinematic 

 Vicente da Silva and Antao [10] 5.264 +2.37

 Sloan & Kleeman [11] 5.210 +1.32

 Makrodimopoulos & Martin [12] 5.148 +0.12

 Le et al. [13] 5.143 +0.02
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6. Conclusions
An equilibrium efg-based model for 

limit analysis of plane strain problems has 
been proposed. This uses a moving least 
squares approximation of the moment 
field, which means that the resulting 
field is smooth over the entire problem 
domain. The collocation method is used in 
combination with the stabilized conforming 
nodal integration (SCNI) scheme to 
ensure that equilibrium needs only to be 
enforced at nodes. The von Mises yield 

criterion is formulated as second-order 
cones so that the underlying limit analysis 
problem becomes a standard second-order 
cone programming problem, which can 
be solved efficiently using primal-dual 
interior point solvers.  
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