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ABSTRACT

A meshless approach to the analysis of two-dimensional elasticity problems by the Element-
Free Galerkin (EFG) method is presented. This method is based on moving least squares approximant

(MLS). The unknown function of displacement is u(x) approximated by moving least square

approximants u" (X) These approximants are constructed by using a weight function, a monomial

basis function and a set of non-constant coefficients. A subdivision similar to finite element method is
used to provide a background mesh for numerical integration. The essential boundary conditions are
enforced by Lagrange multipliers method. The results are obtained for a two-dimensional problem
using different EFG weight functions and compared with the results of finite element method and exact
methods.
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TOM TAT

M6t phuong phép phén tich xap xi khong Iui cho bai toan dan hoi hai chiéu bang phurong phap
phén t tir do Galerkin dwoc gidi thiéu. Phurong phap nay dwa trén xap xi binh phwong toi thiéu déng.
Ham chuyén vj u( )dwoc x4p xi theo MLS thanh u" (X ( ) Xép xi nay duoc xdy dung badng viéc st
dung cac ham trong sé dwoi dang ham da thire co s¢. Viéc chia nho giébng nhw phuong phéap phén ti
hiru han déng vai tro lwéi nén dé thuc hién céc tich phan sé. Tuy nhién céc diéu kién bién chinh phéi
dwoc chinh ly béng phuong phap nhan ttr Lagrange. Két quéa thu duwgce trong phan tich EFG cho bai
toan hai chiéu véi ham trong sé khac nhau dwoc so sanh voi cac két qua cla phwong phap phan tir
hiru han va phwong phap chinh xac.

I. INTRODUCTION background mesh for numerical integration.
The element free Galerkin (EFG) method 1 éssential boundary condifions are enforced

is a meshless method for solving partial EBIIZG ?s aglied topelastostatics.anal Sis Paﬁw,

differential equations which uses only a set of PP ysIS.

nodal points and a CAD_like description of the test, plate .W'th. a central circular hole W'I.I be
body to formulate the discrete model. It has computed in this paper. The results are obtained

. for a two-dimensional problem using different
been used extensively for fracture problems and - ; ;
has vyielded good results when adequate EFG weight functions and compared with the

. . . results of exact methods. In addition, EFG
refinement is used near the crack tip. method Matlab code also is offered in this

In this paper, a meshless approach to the paper. This Matlab code can be developed to
analysis of two-dimensional elasticity problems meshfree application software or other
by the Element-Free Galerkin (EFG) method is meshfree method in the further.

presented. This method is based on moving

least squares approximant (MLS) to construct . MLS APPROXIMATIONS

the approximate function for the Galerkin FUNCTIONS

weak-form.  These  approximations  are MLS functions were developed by
constructed by using a weight function, a Lancaster and Salkauskas to approximate
monomial basis function and a set of non- curves and surfaces. We approximate the
constant coefficients. A subdivision similar to displacement field by a discrete sum,

finite element method is used to provide a
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u(x) =u"(x) =p’ (x)a(x)

where p(x) is a linearly independent
basis of m functions,

' (x)=[Po(x) P(X) .. Pu(x)] @

and a(x) collects the undetermined
parameters of the approximation,

a’ (x)=[a(x) a(x) - a(x)]

where each term is a function of the
position x € Q

vxeQ, (1)

3)

The parameters a(x) are found at any
X point by minimizing the following weighted
least squares discrete L, error norm (Nayroles-
1992),

3 =2w(x_x, o x)-u] @
=Y o(x-x,)[p (x,)a(x)-u, |
1=1 (5)

where a)(x—x,) is a weighting function
which is nonzero on the influence domain of

the node x, ,thus generating a local

approximation and sparse matrices. Only the
X, nodes whose influence domains contain the
x point will appear in the sum (4). The
dimension of the influence domain of each node
and the choice of the weighting function are
decisive parameters for the approximation by
MLS [1].

Minimizing J in order to the unknown
parameters a(x) results in

A(x)a(x)=B(x)u (6a)

(6b)

35

A(x)=|”21w(x—x.>p<x.)pT<x.> G

B(x)=w(x-x,) p(x,)@(x-X,)p(X,)
o o(x-x,)p(x,)

Substituting the result (6) for a(x) in the

initial approximation (1), this expression can be
written in the usual form,

uh(x):lznl“d), (X, =0 (x)U (9)

where the shape function is defined by

o, (x):ji; b, (0)(A*(x)B(x)) = p'A"B
(10)

where m is the order of the polynomial p(x).
To determine the derivatives from the
displacement (9), it is necessary to obtain the
shape function derivatives. The spatial
derivatives of the shape functions are obtained

by
D, :( pTAilBl )

(8)

)X

=p A'B, +p" (A‘l)yx B, +p A'B,

(11)
where
dw
B,x(x)—a(x-x,)p(x,),
Al(x)=—A"A AT (12)
A= o(x-x,)p(x,)p' (x,)

It should be noted that EFG shape
functions do not satisfy the Kronecker delta

criterion: @, (x)# &;. Therefore they are not
interpolants and the name approximation is
used. So u" (X, ) #U, , the nodal parameters u,
are not the nodal values of u"(X). The

approximation to the displacement at the 1"
node depends on the nodal parameter u, as
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well as the nodal parameters u, through u,

corresponding to all other nodes within the
domain of influence of node | . This property
makes the imposition of essential boundary
conditions more complicated than with finite
elements [2]. We will use Lagrange multiplier
method to enforce the essential boundary
conditions.

Fig. 1 Shape of the weight function

1. CHOICE OF SUPPORT DOMAIN AND
WEIGHT FUNCTION

There is no difference if circular or
rectangular support domain is used in the EFG
method [3]. A weight function need to have
following the properties:

e Compact support, i.e. zero outside the
support domain.

e Adopt positive values for all points in the
support domain

e  Has its maximum value at the current point
and decrease when moving outwards.

There are many Kkinds of function
satisfying these properties, but the one used in
this paper are the quartic spline function

3—4rj2+4rj3 Khi rjsl
2
w;(r) = %—4rj+4rj2—%rj3 Khi %Srjgl
0 Khi r;>1
(13)
e
With: I’j :d— (14)

max~j

where d_, is a scaling parameter which is
typically 2-+4 for a static analysis. The

distance c; is determined by searching for
enough neighbor nodes for A to be regular.

IV. LAGRANGIAN MULTIPLIER
METHOD

In EFG the shape functions do not fulfill
the Kronecker delta property. So in order to
invoke essential boundary, we have to use
Lagrange multiplier. This will lead to a
modified Lagrange function [4,5].

L=L+[AT (u-u)ds, (15)
S,

The Lagrange multiplier (A) can be
interpreted as the reaction forces needed to
fulfill the displacement conditions at the
boundary.The approximation given by,

u(x)zuh(x):gq), (x)u, =®(x)U (16)

Because both variations are independent,
and not always equals to zero, the terms they
are multiplied with have to be zero. This gives
the following equation system,

S

with:
K, =[BIDB,dQ; G, =[-N"ods,;
Q S,
f, = j ®"bdQ + j P'tdS, (18)
Q S,
@, 0
dc=[-N"UdS,; B, =| 0 @ |;
S q)l,y q)l X
N, O
Ny = (19)
0 N,

V. NUMERICAL EXAMPLE

A global error indicator, the L,-norm
error in displacement, is defined by [6]



TAP CHI KHOA HQC & CONG NGHE CAC TRUONG PAI HQC KY THUAT & SO 74 - 2009

Y2 edges. The inner boundary is traction free.
) }} Plane strain conditions are assumed

N
2
num exact num exact
{Z{(Uj —Uj )+(VJ —V;

L, = N 7 e The material constants: E =2.10" N /m?
2 2
{Z{(u?"m) +(v;”‘a°t) }} e The unidirectional  tensile  load:
= g=1IN/m
(20) .
. . ] e The demension of the plate:
Consider a plate with a central circular LxL=10x10m d =2m

hole subjected to a unidirectional tensile load in ’
the X direction as shown in Fig. 2. Due to v=0,3

symmetry, only the upper right quadrant of the
plate is modelled (see, Fig. 3). Symmetry
conditions are imposed on the left and bottom

YA

Y

Y

SoponnTTay <

AN A
Y VYV VN

Y %<
Y

)
o
\

\
/
/

v
S e

Fig. 3 One quarter model of plate

Y =<

Y

y
\

| L |

I |
Fig. 2 A 2D solid with a central hole subjected to
a unidirectional tensile load

The analytical solution for the stresses of an infinite plate [7]
2 4

o, =1—a—2(§c03 29+c0349j+§a—4cos49
re\2 2r

2 4
a—z(icos 26 —cos 49]—§a—4cos 40 (21)
r’{2 2r

o, =-

4

= (Esin 20 +sin 49j+§a—4sin 460
2 2r

u = i{r(u+coszej+a—[l+(l+ k)cos 20]—a—3c0529}
4G 2 r r
(22)
1 {
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Comparison between the exact and EFG solution for G, atx=0

— Exact
& = r=12
3k O =16

Error (%)

|
by

1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 1 15 2 25 . 3 35 4 45 5
Influence radius Position y (m)

Fig. 4 Comparison between the exact and EFG Fig. 5 Comparison between the exact and EFG
solution for &, with influence radius r, =1+2.1  solutionforo, at x=0
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Fig. 6 Nodal arrangement Fig. 7 Displacement of nodes with EFG method
EFG G, Exactly G, 3

ra

18

Fig. 8. EFG stress field o, Fig. 9. Analytical stress field o,
VI. CONCLUSIONS AND DISCUSSION the analytical solution when the number of
- An Element Free Galerkin method was nodes approach infinity.
implemented in Matlab for linear statics. The - A little remark has to be mentioned
method seems accurate enough and converge to about the numerical integration. To have
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accurate result, the numerical integration has to
be very fine, i.e. many integration points. Note
that it converge even with a small amount of
integration points, but it is not accurate enough.
The only requirement to converge is that the
number of nodes in the support domain is
greater than the number of components in p.

This to guarantee that the matrix A is
invertible. The many integration points
combined with the enlarged system because of
the multiplier Lagrange function, results in a
very time consuming program. Even for a so
simple problem with linear statics. But no

optimization where made on the code to
improve the performance.

- Meshless methods still  require
considerable improvement before they equal the
prominence of finite elements and finite
differences in  computer science and
engineering. The greatest challenges appear to
be in developing the speed and robustness in
meshless methods which characterize low-order
finite elements. The quality of the
approximations are exemplary, only the cost is
too high. Breakthroughs in these directions will
have considerable impact.
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