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ABSTRACT 

A meshless approach to the analysis of two-dimensional elasticity problems by the Element-
Free Galerkin (EFG) method is presented. This method is based on moving least squares approximant 

(MLS). The unknown function of displacement is  u x  approximated by moving least square 

approximants  hu x . These approximants are constructed by using a weight function, a monomial 

basis function and a set of non-constant coefficients. A subdivision similar to finite element method is 
used to provide a background mesh for numerical integration. The essential boundary conditions are 
enforced by Lagrange multipliers method. The results are obtained for a two-dimensional problem 
using different EFG weight functions and compared with the results of finite element method and exact 
methods. 
Keywords: weight function, Lagrange multipliers method, moving least squares. 

TÓM TẮT 

Một phương pháp phân tích xấp xỉ không lưới cho bài toán đàn hồi hai chiều bằng phương pháp 
phần tử tự do Galerkin được giới thiệu. Phương pháp này dựa trên xấp xỉ bình phương tối thiểu động. 

Hàm chuyển vị  u x được xấp xỉ theo MLS thành  hu x . Xấp xỉ này được xây dựng bằng việc sử 

dụng các hàm trọng số dưới dạng hàm đa thức cơ sở. Việc chia nhỏ giống như phương pháp phần tử 
hữu hạn đóng vai trò lưới nền để thực hiện các tích phân số. Tuy nhiên các điều kiện biên chính phải 
được chỉnh lý bằng phương pháp nhân tử Lagrange. Kết quả thu được trong phân tích EFG cho bài 
toán hai chiều với hàm trọng số khác nhau được so sánh với các kết quả của phương pháp phần tử 
hữu hạn và phương pháp chính xác. 

 
I. INTRODUCTION 

The element free Galerkin (EFG) method 

is a meshless method for solving partial 

differential equations which uses only a set of 

nodal points and a CAD_like description of the 

body to formulate the discrete model. It has 

been used extensively for fracture problems and 

has yielded good results when adequate 

refinement is used near the crack tip.  

In this paper, a meshless approach to the 

analysis of two-dimensional elasticity problems 

by the Element-Free Galerkin (EFG) method is 

presented. This method is based on moving 

least squares approximant (MLS) to construct 

the approximate function for the Galerkin 

weak-form. These approximations are 

constructed by using a weight function, a 

monomial basis function and a set of non-

constant coefficients. A subdivision similar to 

finite element method is used to provide a 

background mesh for numerical integration. 

The essential boundary conditions are enforced 

by Lagrange multipliers method. In this study, 

EFG is applied to elastostatics analysis. Path 

test, plate with a central circular hole will be 

computed in this paper. The results are obtained 

for a two-dimensional problem using different 

EFG weight functions and compared with the 

results of exact methods. In addition, EFG 

method Matlab code also is offered in this 

paper. This Matlab code can be developed to 

meshfree application software or other 

meshfree method in the further. 

II. MLS APPROXIMATIONS 

FUNCTIONS 

MLS functions were developed by 

Lancaster and Salkauskas  to approximate 

curves and surfaces. We approximate the 

displacement field by a discrete sum, 
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h Tu( ) u ( ) ( ) ( )   xp a      x x x x x        (1) 

where p( )x  is a linearly independent 

basis of m  functions, 

       0 1 ...T

mp p p p   x x x x     (2) 

and ( )a  x collects the undetermined 

parameters of the approximation, 

       0 1 ...T

ma a a a   x x x x       (3) 

where each term is a function of the 

position x  

The parameters ( )a  x  are found at any 

x  point by minimizing the following weighted 

least squares discrete 2L  error norm (Nayroles-

1992), 

   
2

1

,
n

h

I I I

I

J u u


     x x x x            (4) 

   

     
2

1

n
T

I I I

I

p a u


     x x x x

      (5) 

where  I x x  is a weighting function 

which is nonzero on the influence domain of 

the node Ix ,thus generating a local 

approximation and sparse matrices. Only the 

Ix nodes whose influence domains contain the 

x point will appear in the sum (4). The 

dimension of the influence domain of each node 

and the choice of the weighting function are 

decisive parameters for the approximation by 

MLS [1]. 

Minimizing J in order to the unknown 

parameters ( )a  x results in 

     A a B ux x x    (6a) 

Or:  

     1a A B ux x x
     (6b) 

With:  

       
1

n
T

I I I

I

A p p


 x x x x x   (7) 

         

   

1 1 2 2

... n n

B p p

p

 



 -

-

x x-x x x x x

x x x

 (8)  

Substituting the result (6) for ( )a  x in the 

initial approximation (1), this expression can be 

written in the usual form, 

     
1

n
h

I I

I

u u U


  x x x    (9) 

where the shape function is defined by 

        1 1

0

m
T

I j I
jI

j

p A B p A B 



  x x x x  

(10) 

where m  is the order of the polynomial p( )x . 

To determine the derivatives from the 

displacement  (9), it is necessary to obtain the 

shape function derivatives. The spatial 

derivatives of the shape functions are obtained 

by 

 

 

1

,
,

1 1 1

, , ,
,

T

I I

T T T

I I I

p A B

p A B p A B p A B



  

 

  

x x

x x xx

 

  (11) 

where   

     ,I I I

d
B p

d




x
x x - x x

x
; 

 1 1 1

, ,A A A A   
x x
x ;  (12) 

     ,

1

n
T

I I I

I

A p p


x
x - x x x

  

It should be noted that EFG shape 

functions do not satisfy the Kronecker delta 

criterion:  I ij x . Therefore they are not 

interpolants and the name approximation is 

used. So  h

I Iu x u , the nodal parameters Iu  

are not the nodal values of  h

Iu x . The 

approximation to the displacement at the 
thI   

node depends on the nodal parameter Iu  as 
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well as the nodal parameters Iu  through nu  

corresponding to all other nodes within the 

domain of influence of node I . This property 

makes the imposition of essential boundary 

conditions more complicated than with finite 

elements [2]. We will use Lagrange multiplier 

method to enforce the essential boundary 

conditions.

 

Fig. 1 Shape of the weight function 

III. CHOICE OF SUPPORT DOMAIN AND 

WEIGHT FUNCTION 

There is no difference if circular or 

rectangular support domain is used in the EFG 

method [3]. A weight function need to have 

following the properties: 

 Compact support, i.e. zero outside the 

support domain. 

 Adopt positive values for all points in the 

support domain 

 Has its maximum value at the current point 

and decrease when moving outwards. 

There are many kinds of function 

satisfying these properties, but the one used in 

this paper are the quartic spline function 
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  (13) 

With:  
max

j

j

j

r
d c



x x

 (14) 

where maxd  is a scaling parameter which is 

typically 2 4  for a static analysis. The 

distance jc  is determined by searching for 

enough neighbor nodes for A  to be regular.  

IV.  LAGRANGIAN MULTIPLIER 

METHOD 

In EFG the shape functions do not fulfill 

the Kronecker delta property. So in order to 

invoke essential boundary, we have to use 

Lagrange multiplier. This will lead to a 

modified Lagrange function [4,5]. 

 
u

T

u

S

L L u u dS    (15) 

The Lagrange multiplier ( ) can be 

interpreted as the reaction forces needed to 

fulfill the displacement conditions at the 

boundary.The approximation given by, 

       
1

n
h

I I

I

u u u U


   x x x x  (16)  

Because both variations are independent, 

and not always equals to zero, the terms they 

are multiplied with have to be zero. This gives 

the following equation system, 

0T

K G U f

G q
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T
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0

0
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 

 (19) 

 

V. NUMERICAL EXAMPLE 

A global error indicator, the L2-norm 

error in displacement, is defined by [6] 
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

                                                                (20) 

Consider a plate with a central circular 

hole subjected to a unidirectional tensile load in 

the x  direction as shown in Fig. 2. Due to 

symmetry, only the upper right quadrant of the 

plate is modelled (see, Fig. 3). Symmetry 

conditions are imposed on the left and bottom 

edges. The inner boundary is traction free. 

Plane strain conditions are assumed 

 The material constants: 
11 22.10 /E N m  

 The unidirectional tensile load: 

1 /q N m  

 The demension of the plate: 

10 10 ; 2L L m d m     

0,3 

 

 
Fig. 2 A 2D solid with a central hole subjected to 

a unidirectional tensile load 

   
 

Fig. 3  One quarter model of plate 

 

The analytical solution for the stresses of an infinite plate [7] 
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Fig. 4 Comparison between the exact and EFG 

solution for x  with influence radius 1 2.1ir    
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Fig. 5 Comparison between the exact and EFG 

solution for x at 0x   

             

Fig. 6  Nodal arrangement 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  7  Displacement of nodes with EFG method 

 

Fig. 8. EFG stress field x  

 
Fig. 9. Analytical stress field x  

 

VI. CONCLUSIONS AND DISCUSSION 

- An Element Free Galerkin method was 

implemented in Matlab for linear statics. The 

method seems accurate enough and converge to 

the analytical solution when the number of 

nodes approach infinity.  

- A little remark has to be mentioned 

about the numerical integration. To have 
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accurate result, the numerical integration has to 

be very fine, i.e. many integration points. Note 

that it converge even with a small amount of 

integration points, but it is not accurate enough. 

The only requirement to converge is that the 

number of nodes in the support domain is 

greater than the number of components in p . 

This to guarantee that the matrix A  is 

invertible. The many integration points 

combined with the enlarged system because of 

the multiplier Lagrange function, results in a 

very time consuming program. Even for a so 

simple problem with linear statics. But no 

optimization where made on the code to 

improve the performance. 

- Meshless methods still require 

considerable improvement before they equal the 

prominence of finite elements and finite 

differences in computer science and 

engineering. The greatest challenges appear to 

be in developing the speed and robustness in 

meshless methods which characterize low-order 

finite elements. The quality of the 

approximations are exemplary, only the cost is 

too high. Breakthroughs in these directions will 

have considerable impact. 
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