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ABSTRACT 

The optical resonance of a three-level system of the strongly correlated electrons in the two-
level semiconductor quantum dot interacting with the linearly polarized monochromatic 
electromagnetic radiation is studied. With the application of the Green function method the 
expressions of the state vectors and the energies of the stationary states of the system in the 
regime of the optical resonance are derived. The Rabi oscillations of the electron populations at 
different levels as well as the Rabi splitting of the peaks in the photon emission spectra are 
investigated. 

PACS numbers: 71.35.-y, 78.55.-m, 78.67.Hc 
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1. INTRODUCTION 
 

The electronic structure of semiconductor quantum dots (QDs) and the electromagnetic 
interaction processes of the strongly correlated electron systems in these nanostructures were 
widely investigated. In many theoretical and experimental works the formation and the radiative 
recombination of the excitons and the biexcitons as well as the electron-electron interactions, 
including the exchange interaction, in the direct band gap semiconductor QD were studied. If 
between two states of the electron system in the QD the radiative transitions are allowed then at 
the electromagnetic radiation frequency in the range of the resonance with these transitions the 
optical resonance phenomenon with the Rabi oscillations of the populations of these states 
occurs, as in the case of the optical resonance of the two-level atomic systems [1]. The Rabi 
oscillations in the semiconductor QDs were studied in many experimental and theoretical works 
[2 - 18]. The Rabi oscillations in the four-level double structures were recently investigated [19, 
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20]. The vacuum Rabi splitting of the exciton in the semiconductor QD interacting with the 
quantized electromagnetic field in a microcavity was also widely studied [21]. The photon 
absorption induced electron transport through semiconductor QDs is the basics of the physics of 
QD photodetectors [17, 18, 22]. A photodetector is most sensible when the frequency of the 
radiation is in the resonance with the dipole transition between the ground state of the QD and 
the exciton state. In this frequency range the Rabi oscillations play a major role in the generation 
of the photocurrent.  

The simplest model of the semiconductor QD’s for the study of the optical resonance as well as 
the photon absorption induced electron transport would be the disk-shaped direct band gap 
semiconductor QD with two discrete energy levels, the upper level being that of an electron 
from the conduction band in the confining potential field of the fabricated QD, while the lower 
one being that of an electron from the heavy-hole valence band ⎜

⎝
⎛ =

2
3J   and  ⎟

⎠
⎞±=

2
3

zJ . We call 

it shortly the two-level semiconductor QD. Even in this simplest semiconductor QD the electron 
system cannot be always considered as the analogy of a two- level atomic system containing 
only one electron, because the QD may contain not only one electron, but also two or three 
electrons. For example, the linearly polarized monochromatic electromagnetic radiation with the 
frequency in the range of the optical resonance generates the Rabi oscillations between the 
ground state of the QD (that without any electron and any hole) and some exciton state as well 
as between this exciton state and the biexciton one. These three states form a three-level system 
and there must be some influence of the biexciton on the Rabi oscillations between the ground 
state and the exciton state, as this was discussed by many authors [2, 7, 8, 12, 18]. The two-
photon Rabi oscillations of the biexciton were observed in a recent experimental work [14]. The 
theory of the Rabi oscillations of the three-level system “ground state-exciton-biexciton” in the 
two-level disk-shaped semiconductor QD interacting with the linearly polarized monochromatic 
electromagnetic radiation will be presented in this work.    

In the theory of the optical resonance in a two-level atomic system the optical Bloch equation 
was established and analytically solved [1]. Similarly, for the study on the Rabi oscillations in 
semiconductors the semiconductor Bloch equations [23 - 31] together with their approximate 
and numerical solutions were used. In the present work instead of using the semiconductor 
Bloch equations for the QD we shall apply the Green function technique. 

In Sec. 2 the eigenstates and the corresponding eigenvalues of the Hamiltonian of the Hubbard 
type of the electron system in a two-level semiconductor QD with the strong Coulomb 
interaction between the electrons as well as with their anisotropic exchange interaction will be 
given. It will be shown that beside of several pairs of eigenstates which can be considered as the 
analogies of a two-level atomic system there exist also a triplet of three eigenstates which must 
be considered as a three-level system. The Green function technique for the study of the Rabi 
oscillations in this three-level system will be presented in Sec. 3. The analytical expressions of 
the Green functions are derived exactly, all Rabi oscillations are found and the algebraic 
equations determining the Rabi frequencies are established. In particular, the influence of the 
biexciton state on the optical resonance between the ground state of the QD and the exciton state 
as well as the two-photon Rabi oscillations of the biexciton will be investigated in details. The 
Rabi flopping of the populations between different levels of the electron system and the 
structure of the photon emission spectrum as well as the polarization properties of the emitted 
photons are studied in Sec. 4 and Sec. 5. We use the unit system with  ħ .1== c   

2. STATE VECTORS AND ENERGY SPECTRUM OF THE ELECTRON SYSTEM 

We consider the simplest model of the semiconductor QD with two discrete energy levels 
(in the conduction band) and (in the heavy-hole valence band). Denote  and 0

1E 0
2E σic
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,2,1, =+ iciσ  the annihilation and creation operators of the electrons with the spin projection 

 at these levels and assume the Hubbard form expression of the Hamiltonian of the 
electron system in the QD:  

↓=↑,σ

            (1) ,][][
2,1

2121212112
0∑

=
↓↑

+ +++++=
i

yyxxexzzexiiiiiidot ssssVssUnnUnnUccEH

,
2
1,,,, 0

2
0
1 iiiiiiiii

i

i
i ccsnnnccnEE

c
c

c αασσσ σ+↓↑
+

↓

↑ =+==>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  

zyx ,,=α , zyx σσσ ,,  being the Pauli matrices. In the formula (1) U1, U2 and U12 are the 
potential energies of the Coulomb interaction between two electrons at the same energy level E1, 
E2 or at two different ones, and are two constants of the exchange interaction between 
two electrons at different levels. We assume the approximate cylindrical symmetry with the 
symmetry axis Oz so that there are two exchange interaction constants and . For the 
definiteness we chose the periodic Bloch factors in the wave functions of the electrons in the 
heavy-hole band to be 

exU exV

exU exV

↑
+
2
iYX  and ↓

−
2
iYX . 

In the QD there exist 16 different states of the electron system: 

- One state without any electron at both levels - the vacuum state 0  with the vanishing energy. 
In the electron-hole formalism it is the state of two holes. 

- Four one-electron states 2,1,,,0 =↓=↑=Φ + icii σσ
σ . In the electron-hole formalism  

are two states of the positive trion - the exciton-hole complex,  are two states of the hole. 

σ
1Φ

σ
2Φ

- Six two-electron states 01111
+
↓

+
↑=Φ cc , 02222

+
↓

+
↑=Φ cc , ,02112

++=Φ σσ
σ cc   ,,↓=↑σ

( ) ,0
2

1
212112
+
↑

+
↓

+
↓

+
↑ +=Φ cccct   ( ) 0

2
1

212112
+
↑

+
↓

+
↓

+
↑ −=Φ ccccs .                                                      

In the electron-hole formalism  is the state without any electron and any hole - the ground 
state of the QD, 

22Φ

11Φ  is that of the biexciton,  and  are three states of the 
triplet exciton,  is that of the singlet exciton. 

↓=↑Φ ,,12 σσ t
12Φ

s
12Φ

- Four three-electron states ,0211112
++

↓
+
↑=Φ σ

σ ccc ↓=↑=Φ +
↓

+
↑

+ ,,0221122 σσ
σ ccc . In the 

electron-hole formalism  are two states of the negative trion - the exciton-electron 
complex,  are two states of one electron at the energy level in the conduction band and 
without any hole. 

σ
112Φ

σ
122Φ

-  One four-electron state 022111122
+
↓

+
↑

+
↓

+
↑=Φ cccc .  In the electron-hole formalism it is the state 

without any hole and with two electrons. 
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In the presence of the interaction between the electrons in the QD and the monochromatic 
electromagnetic wave having the frequency 0ω  in the resonance with the radiative transitions 
between two discrete energy levels the stationary states of the electron system in the QD must 
be changed due to the appearance of the Rabi oscillations. Since we are interested only in the 
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resonant radiative transitions we shall neglect the terms in the interaction Hamiltonian which 
give no contribution to these resonant transitions. This is the rotating wave approximation 
(RWA). 

The concrete expression of the interaction Hamiltonian depends on the polarization properties of 
the electromagnetic radiation. We shall study the two-level QD interacting with the 
electromagnetic radiation linearly polarized in the direction of the axis Ox. In this case the 
matrix elements of the transitions 

,,,21 ↓=↑↔ σσσ cc  

do not depend on the spin projections of the electrons. In the RWA the interaction Hamiltonian 
has the form 

                                                                                          (2)      
The total Hamiltonian of the QD interacting with the electromagnetic radiation equals 

.)( 2112
00 ccecceH titi

em
+−+ += ωωλ

                                                           emdot HHH += .                                                           (3) 

Following the earlier work [22] we eliminate the explicitly time-dependent factors  in the 
interaction Hamiltonian by means of the unitary transformation 

tie 0ω±

                                                          
( )

,1122
0

2
ccccti

eU
++ −

=
ω

                                                          (4)  

                                               ,~ U
dt

dUiUHUH dotdot

+
+ +=                                                (5) 

                                                    ,~ U
dt

dUiHUUH
+

+ +=                                                 (6) 

and use a new representation in which the total Hamiltonian is time-independent 

                         
,)(][

][~

21122121

2,1
212112

ccccssssV

ssUnnUnnUccEH

yyxxex

i
zzexiiiiii

++

=
↓↑

+

++++

++++= ∑
λ

                      (7) 

where 

                                                ⋅+=−=
2

,
2

00
22

00
11

ωω EEEE                                        (8) 

For the definiteness we chose  so that  . The Hamiltonian (7) generates 
the mixing between following eigenstates of the Hamiltonian (5): 

0
2

0
10 EE −≤ω 21 EE ≥

.,,,, 12211222121121 ↓=↑Φ↔ΦΦ↔Φ↔ΦΦ↔Φ σσσσσ s  

Therefore two pairs of one-electron states and two pairs of three-electron states are four two-
level systems, while the set of three two-electron states  and s

1211,ΦΦ 22Φ  is a three-level 
system. The separate two-electron state does not participate in the Rabi oscillations.   t

12Φ
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Note that because of the exclusion Pauli principle in the transitions between the three-electron 
states  there are the transitions of only the electron with the spin projection σσ

122112 Φ↔Φ σ−  
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between two discrete energy levels . Therefore the Rabi frequency of the optical 
resonance in the two-level system of three-electron states is the same as that of the one-electron 
states. 

+
−

+
− ↔ σσ 21 cc

3. GREEN FUNCTIONS AND RABI OSCILATIONS 

For the study of the optical resonance of the systems of two-electron states in the QD we 
introduce the two-particle Green functions 

                        ,0)()()()(0)()( tctctctcttittG lkji
ijkl ′′′−−=′− ++

−− σσσσθ                     (9)  

i, j, k, l = 1, 2, with some fixed or ↓ , and denote  their Fourier transforms: =↑σ )(ωijklF

                                          .)(
2
1)( )(∫ ′−−=′− ωω
π

ω dFettG ijklttiijkl                                  (10) 

The system of differential equations for the Green functions (9) was derived with the use of the 
total Hamiltonian (7) and the corresponding system of algebraic equations for the Fourier 
transforms was solved. These functions contain three roots )(ωijklF )(ωijklF 1211

~,~ EE  and 22
~E  

of the algebraic equation 

                                            (11) .0)2(2))()(( 2211
2

221211 =−−−−−− EEEEE s ωλωωω

where 

,, 0
0
22220

0
1111 ωω +=−= EEEE  

0
2212

0
11 and, EEE s being the eigenvalues of the Hamiltonian (1) corresponding to its 

eigenstates  and :  s
1211,ΦΦ 22Φ

,2 1
0
1

0
11 UEE +=   ,2 2

0
2

0
22 UEE += .

2
1

4
1

12
0
2

0
112 exex VUUEEE s −−++=  

We chose the notations such that 

222212121111
~,~,~ EEEEEE s →→→  at 0→λ  

and have 

                   

,~
1

)~~)(~~(
2)~)(~(

~
1

)~~)(~~(
2)~)(~(

~
1

)~~)(~~(
2)~)(~()(

2212221122

2
22221222

1222121112

2
22121212

1122111211

2
221112111111

EEEEE
EEEE

EEEEE
EEEE

EEEEE
EEEEF

s

s

s

−−−
−−−

+

−−−
−−−

+

−−−
−−−

=

ω
λ

ω
λ

ω
λω

                              (12) 
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The poles 1211
~,~ EE and 22

~E  in the expressions (12) – (17) of the Fourier transforms of the two-
particle Green functions are the eigenvalues of the total Hamiltonian (7). Denote 

221211
~and~,~ ΦΦΦ  the corresponding eigenstates of this Hamiltonian, 

.0at~,~,~
222212121111 →Φ→ΦΦ→ΦΦ→Φ λs  

The eigenstates  of the Hamiltonian (5) of the electron system in the QD in the 
absence of the interaction with the electromagnetic radiation are three linear combinations of them 

221211 and, ΦΦΦ s

                                               

.~~~
,~~~
,~~~

22331232113122

22231222112112

22131212111111

Φ+Φ+Φ=Φ

Φ+Φ+Φ=Φ

Φ+Φ+Φ=Φ

aaa

aaa

aaa
s                                        (18) 

Calculating the Fourier transforms of the two-particle Green functions (9) with the use of the 
relations (18) and comparing the results with the expressions (12)–(17) we obtain                                                                

;
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The coefficients  satisfy following relations αβa
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This means that the linear transformation (18) is unitary and has following inverse 
transformation 
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                                         (26) 

The formulae (18) - (24) and (26) would be needed for the study of the resonant photon 
emission from the QD in the optical resonant regime as well as the photon absorption induced 
electron transport through the QD. 

Usually the biexciton has a non-vanishing binding energy. Therefore, three types of radiative 
transitions and 112211121222 , Φ↔ΦΦ↔Φ ss Φ↔Φ  cannot be simultaneously at the 
resonance: if one type of transition is at the resonance, then the others are only near the 
resonance. For the study of the Rabi oscillations between the ground state of the QD and the 
singlet exciton state we consider the special case when the radiation frequency 0ω  is tuned to 
the value at the resonance with the transitions between them:  

0
22120 EE s −=ω . 

In this case 

2212 EE s =  

and the equation (11) becomes  

                                                           (27) .0)2(2)()( 2211
2

11
2

22 =−−−−− EEEE ωλωω
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Denote δ2  the binding energy of the biexciton, 

,
2

2211
12

EEE s +
−=δ  

and suppose that 

.1<<
δ
λ

 

If the terms of the order δλ  and higher are neglected then equation (27) has following three 
approximate roots 

                             ,2~,2~,~
222222121111 λλ −≈+≈≈ EEEEEE                          (28) 

and from the expressions (19)–(24) we obtain following approximate values of the coefficients 
in the transformation (18): 

⋅≈≈−≈≈≈≈≈≈≈
λ
λ

2
1,

2
1,0,1 322333223113211211 aaaaaaaaa        (29) 

The formulae (28) and (29) show that if the small terms of the order δλ  and higher are 
neglected then the pair of the ground state of the QD and the singlet exciton state behaves at the 
resonance like a two-level atomic system but with the Rabi frequency 

                                                             ,22 λ≈Δ                                                             (30) 

which is 2  times larger than the value of the Rabi frequency of the two-level system of one-
electron state  and  (with a given spin projection σ

1Φ σ
2Φ σ ). That is because the linearly 

polarized electromagnetic radiation induces the resonant transitions of both electrons in the two-
electron states and therefore the intensity of the transitions between the two-electron states 

 is twice of that of the transitions between the one-electron states .  s
1222 Φ↔Φ σσ

21 Φ↔Φ

However, in the first order with respect to the ratios δλ  instead of the formulae (28) we have  
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The formulae (31) show that in this order there are two different Rabi frequencies 

.22 2 δλλ ±  In comparison with the formulae (28) and (29) the new terms of the order 

δλ in the formulae (31) and (32) determine the influence of the biexciton on the resonant Rabi 
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oscillations between the singlet exciton and the ground state of the QD. This influence is 
significant if λ  and δ  have the magnitudes of the same order.   

Now we consider another special case: the resonant two-photon transitions  
between the ground state of the QD and that of the biexciton [14], when the radiation frequency 

1122 Φ↔Φ

0ω  is tuned to the value 

.,
2 02211

0
22

0
11

0 EEEEE
==

−
=ω  

Equation (11) becomes 

                                                                            
(33) 

0]4))()[(( 2
1200 =−−−− λωωω sEEE

and is exactly solvable. The assignments of its roots with the eigenvalue  and   
corresponding to the eigenstates 

1211
~,~ EE 22

~E
221211

~and~,~ ΦΦΦ  of the total Hamiltonian (7) depend on the 
sign of δ . We have 
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2
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+
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where  

                                                     2122
120 ]16)[( λ+−=Δ sEE                                            (36) 

is the Rabi frequency at the resonance. From the formulae (34) or (35) for the eigenvalues 
and  of the total Hamiltonian (7) and the relations (19)–(24) we obtain following 

expressions of the coefficients 
1211

~,~ EE 22
~E

3,2,1,, =βααβa , of the unitary transformation (18) in the case 

0>δ : 

               

⋅
−ΔΔ

=
+ΔΔ

=−=

Δ
−Δ

−=
Δ
+Δ

==

−ΔΔ
=

+ΔΔ
==

)(
2,

)(
2,

2
1

,
2

1,
2

1,0

,
)(

2,
)(

2,
2

1

333231

232221

131211

δ
λ

δ
λ

δδ

δ
λ

δ
λ

aaa

aaa

aaa

                (37) 

The formulae in the case 0<δ  can be derived in a similar manner.  

It is interesting to consider the QD with the vanishing biexciton binding energy:  

.
2 0

2211
12 EEEE s =

+
=  
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(38) 

0]))([()( 2
22110 =−−−− λωωω EEE

with the roots 

                                     ,
2
1~,

2
1~,~

022012011 Ω−=Ω+== EEEEEE                             (39) 

where Ω  is the Rabi frequency 

                                                  [ ] .16)( 2122
2211 λ+−=Ω EE                                          (40) 

For the definiteness we suppose that . Then 2211 EE ≥

            at 22221111
~,~ EEEE →→ .0→λ  

At the resonance  the Rabi frequency 2211 EE = Ω  becomes 

                                                                     λ4=Δ                                                              (41) 

and the matrix elements  of the unitary transformation (18) equal αβa

       ⋅======−=−==
2
1,0,

2
1

333213122131232211 aaaaaaaaa                    (42) 

This means that in the case of the QD with the vanishing biexciton binding energy the radiation 
frequency 

0ω can be tuned to the resonance with both types of radiative transitions  

,  as well as to the resonance with the two-photon transitions  and 
therefore there exist all three types of level mixings: between the QD ground state and the 
singlet exciton, between the singlet exciton and the biexciton, and also between the QD ground 
state and the biexciton. Note that the resonance Rabi frequency (41) of the three-level system of 
two-electron states   is twice of that of the two-level system of one-electron 
states.  

s
1222 Φ↔Φ

1112 Φ↔Φ s
1122 Φ↔Φ

221211 and, ΦΦΦ s

It can be shown that if the biexciton binding energy is very small and the radiation frequency 

0ω is very near to the resonances with both types of radiative transitions  and 

, then the simultaneous mixing between all three states also takes place - the role of 
the biexciton on the optical resonance of the QD is significant. 

s
1222 Φ↔Φ

1112 Φ↔Φ s

4. RABI FLOPPING OF POPULATIONS 

Due to the optical resonance in the QD there appears the Rabi flopping between its different 
energy levels. Suppose that at the initial time moment 0=t  both states with two spin 
projections  at the lower energy level  are occupied by the electrons, while the 

upper energy level  is empty. Then at a later time moment the mean value of the 
number of the electrons at the upper level equals 

↓=↑,σ 0
2E

0
1E 0>t

                         .)()()( 22

~

11

~

222211221 ΦΦ=ΦΦ= −++ tHitHi eccetctctn                        (43) 
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Performing the unitary transformation (18) of 22Φ  into a linear combination of ,~,~
1211 ΦΦ   

,~
22Φ   applying the Schrödinger equation 

222222121212111111
~~~~,~~~~,~~~~
Φ=ΦΦ=ΦΦ=Φ EHEHEH  

and then performing again the inverse transformation (26) of 221211
~and~,~ ΦΦΦ   into the linear 

combinations of , we obtain 221211 and, ΦΦΦ s

                   

.)~~cos()2(2

)~~cos()2(2

)~~cos()2(2

)2()2()2()(

22121232133322322333

22111131133321312333

12111131123222322131

2
13

2
23

2
33

2
12

2
22

2
32

2
11

2
21

2
311

tEEaaaaaaaa

tEEaaaaaaaa

tEEaaaaaaaa

aaaaaaaaatn

−++

−++

−++

+++++=

                       (44) 

The expressions of the products of the coefficient  in the formula (44) were given in Sec.3.  αβa

Together with the mean value of the number of the electrons at the upper level )(1 tn  there are 
also other similar physical quantities characterizing the Rabi population flopping, for example 
the mean value of the number of the pairs each of which consists of two electrons with both spin 
projection  at the same upper energy level ↓=↑,σ

                                ,)()()()()( 2211112211 ΦΦ= ↓
+
↓↑

+
↑ tctctctctn                                    (45) 

and that of the pairs each of which consists of one electron at the upper level and another 
electron at the lower one 

                                         .)()()()()( 2222112212 ΦΦ= ++ tctctctctn                               (46) 

)(11 tn  is the population of the biexciton state while  is that of the exciton state. We have      )(12 tn

       
.)~~cos(2)~~cos(2

)~~cos(2)(

221212321333221111311333

121111311232
2
13

2
33

2
12

2
32

2
11

2
3111

tEEaaaatEEaaaa

tEEaaaaaaaaaatn

−+−+

−+++=
             (47) 

and 

             
.)~~cos(2)~~cos(2

)~~cos(2)(

221222322333221121312333

121122322131
2
23

2
33

2
22

2
32

2
21

2
3112

tEEaaaatEEaaaa

tEEaaaaaaaaaatn

−+−+

−+++=
      (48)   

It is easy to see that 

.)()(2)( 12111 tntntn +=  

The Rabi oscillations of the populations (44), (47) and (48) depend on three frequencies 

                                                (49) .,~~,~~ )2()1()3(
2212

)2(
1211

)1( Ω+Ω=Ω−=Ω−=Ω EEEE

At the resonance of the two-photon transitions between the ground state of the QD and that of 
the biexciton [14], , they are expressed in terms of the Rabi frequency (36) and the 
constant 

2211 EE =
δ : 
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Δ=ΩΔ+−=Ω )2()1( ,)(
2
1 δ  if ;0>δ  )(

2
1, )2()1( Δ−=ΩΔ=Ω δ  if .0<δ          (50) 

In the case 0>δ  the formulae (44), (47) and (48) become 

                     ,
2
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)(

8
2

cos
)(

81)(
22

1 tttn δ
δ

λδ
δ

λ +Δ
+ΔΔ

−
−Δ

−ΔΔ
−=                         (51) 
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2
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)(

4
2
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)(

4)(
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2
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tttn
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Δ

−

⎟
⎠
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⎜
⎝
⎛ +Δ
−

+ΔΔ
+⎟
⎠
⎞

⎜
⎝
⎛ −Δ
−

−ΔΔ
=

λ

δ
δ

λδ
δ

λ

              (52) 

                                                      .)cos1(4)( 2

2

12 ttn Δ−
Δ

=
λ

                                              (53) 

In the experiments usually the dependence of the population on the pulse area was measured. 
From the formulae (45) – (48), (50) – (53) it follows the similar oscillations of this physical 
observable quantity.  

In the special case of the vanishing biexciton binding energy ( 0=δ ) and at the resonance of 
both types of radiative transitions: between the ground state of the QD and the exciton as well as 
between the exciton and the biexciton,  

221112 EEE s == ,                                  

the formulae (51), (52) and (53) have the simple forms 

                                                             ,
2
1cos1)(1 ttn Δ−=                                                  (54)                               

                                                 ,cos
8
1

2
1cos

2
1

8
3)(11 tttn Δ+Δ−=                                    (55)             

                                                            ,)cos1(
4
1)(12 ttn Δ−=                                              (56)               

where  is determined by the formula (41). Δ

5. RABI SPLITTING IN PHOTON EMISSION SPECTRA 

For the study of the spontaneous emission of the photon with a given energy ω from the QD in 
the regime of the optical resonance we introduce the effective Hamiltonian of the interaction 
between electrons and photons. Denote )( yx γγ  and  the annihilation and creation 
operators for the photon with the energy 

)( ++
yx γγ

ω  and the linear polarization along the axis Ox (Oy). 
With the above- mentioned convention on the electron wave function at the heavy-hole band we 
have following effective photon-electron interaction Hamiltonian 

 173



 
 
Nguyen Van Hieu and Nguyen Bich Ha          Optical resonance of a three-level system in semiconductor... 
 

                   .,.])()[(
2

1
1212int cHecciccigH ti

yxyx +++−= ↓
+
↓

++
↑

+
↑

++ ωγγγγ                 (57) 

where the effective coupling constant g is proportional to the matrix element of the dipole 
transition of electrons between two discrete energy levels. The terms not contributing to the 
photon emission assisting the transition of the electron from the upper level to the lower one as 
well as to the inverse process are not included in the expression (57). 

Between three two-electron states 221211
~and~,~ ΦΦΦ there exist 6 photon emission assisted 

transitions. It can be shown that the photons emitted from all these transitions are linearly 
polarized along the axis Ox. The rates of these transitions and the energies of the emitted 
photons are 

           ,~~,)(~~, 12110
2

11222132
22

11int12 EEaaaagHx −+=+=ΦΦ ωωγ            (58)   

           ,~~,)(~~, 11120
2

12212231
22

12int11 EEaaaagHx −+=+=ΦΦ ωωγ            (59) 

           ,~~,)(~~, 22120
2

12232233
22

12int22 EEaaaagHx −+=+=ΦΦ ωωγ          (60) 

           ,~~,)(~~, 12220
2

13222332
22

22int12 EEaaaagHx −+=+=ΦΦ ωωγ           (61) 

           ,~~,)(~~, 22110
2

11232133
22

11int22 EEaaaagHx −+=+=ΦΦ ωωγ             (62) 

           .~~,)(~~, 11220
2

13212331
22

22int11 EEaaaagHx −+=+=ΦΦ ωωγ            (63) 

Together with six photon emission processes considered above there exist also three photon 
emission assisted transitions from the states 221211

~and~,~ ΦΦΦ  to the state . It can be shown 
that the emitted photons are linearly polarized along the axis Oy. Their rates and the 
corresponding photon energies are  

t
12Φ

                        ,~,~, 12110
2
11

22

11int12
tt

y EEagH −+==ΦΦ ωωγ                           (64) 

                        ,~,~, 12120
2
12

22

12int12
tt

y EEagH −+==ΦΦ ωωγ                         (65) 

                        .~,~, 12220
2
13

22

22int12
tt

y EEagH −+==ΦΦ ωωγ                         (66) 

The intensities of the spectral lines are proportional to the products of the transition rates and the 
populations of the corresponding initial states 

1211
~,~ ΦΦ and 22

~Φ . Because before the 

pumping by the resonant electromagnetic radiation the two-electron system exists in the ground 
state 22Φ , 

,~~~
22331232113122 Φ+Φ+Φ=Φ aaa  
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the populations of the initial states 221211
~and~,~ ΦΦΦ  are  and , resp. 2

32
2
31, aa 2

33a

Consider now two special cases when the radiation frequency 0ω  is tuned to the corresponding 
resonance values. For the definiteness suppose that the biexciton binding energy is positive, 

0>δ . In the special case of the resonance between the biexciton and the ground state of the QD 
from the formulae (34) and (37) we obtain following expressions of the (relative) intensities of 
nine peaks and the energies of the emitted photons:   

                    ,)(
2
1,

8
)~~( 01211 δωωδ

+Δ−=
Δ
+Δ

=Φ→Φ CI                               (67) 

                    ,)(
2
1,)~~( 02
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Δ
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δλCI                                           (70) 

                    ,)(
2
1,

8
)~~( 02211 δωωδ

−Δ+=
Δ
−Δ

=Φ→Φ CI                                     (71) 

                    ,)(
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1,)~~( 02

2

1122 δωωλ
−Δ−=

Δ
=Φ→Φ CI                                           (72) 
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4
1)~( 011

t
exex

t
ex EECI s −+−==Φ→Φ δωω                                       (73) 

                    ,)(
2
1,

)(
16)~( 022

4

12
t
exex

t
ex EECI s −+−Δ+=

+ΔΔ
=Φ→Φ δωω

δ
λ

     (74) 

                   t
exex

t
ex EECI s −++Δ−=

−ΔΔ
=Φ→Φ )(

2
1,

)(
16)~( 022

4

22 δωω
δ

λ
      (75) 

with some constants C, the resonance Rabi frequency Δ being determined by the formula (36). If 
the constants λ and δ have the magnitudes of the same order, then the rates of all nine above-
mentioned transitions are comparable. 

However, if the radiation frequency 0ω  is tuned to the value corresponding to the resonance 
between the singlet exciton and the ground state of the QD, 

,2212 EE s =  

then there appears another spontaneous photon emission spectrum. Suppose that 1<<δλ . 
From the formula (29) it follows that in this special case the transition rates (59), (62), (63), (65) 
and (66) as well as the population of the initial state 11

~Φ  of the transitions in the formulae (58) 
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and (64) vanish. Therefore in the photon emission spectrum there are only two peaks. Their 
(relative) intensities and energies of the emitted photons are 

                           ,22,
8
1)~~( 02212 λωω +==Φ→Φ CI                                   (76) 

                          .22,
8
1)~~( 01222 λωω −==Φ→Φ CI                                     (77) 

The damping of the Rabi oscillations due to the electron-phonon interaction was studied in 
several works [6, 9, 11, 13, 16, 18]. However, the electron-phonon interaction in the QD is not 
only the origin of the damping of the Rabi oscillations. It might cause also the change of the 
photon emission spectrum: some spontaneous photon emission processes are suppressed by the 
fast exciton relaxation and there appear some new ones, because beside of the states 

221211
~and~,~ ΦΦΦ  of the three-level system there exists also the separate triplet exciton state 

 with the energy  t
12Φ

.
2
1

4
1

12
0
2

0
112 exex

t VUUEEE +−++=  

     Suppose that there is some strong non-radiative phonon assisted relaxation 
mechanism . If tphonons

1212 Φ⎯⎯⎯ →←Φ 121222
~~ EEE t << , for example, then the radiative transitions 

1112
~~ Φ→Φ , 2212

~~ Φ→Φ  and t
1212

~ Φ→Φ with the rates (59), (60) and (65) are suppressed by 
the phonon-emitting non-radiative fast relaxation tphonon

1212
~ Φ⎯⎯ →⎯Φ . Similarly, in the case 

)~(~
122212 EEEt <<  the radiative transitions 22121112

~~,~~ Φ→ΦΦ→Φ , 12221122
~~,~~ Φ→ΦΦ→Φ ,  

and t
1212

~ Φ→Φ , t
1222

~ Φ→Φ  with the rates (59), (60), (61), (63) and (65), (66) are suppressed 
(at the resonance the rate of the non-radiative relaxation tphonon

1211
~ Φ⎯⎯ →⎯Φ  vanishes, because 

). There appear, however, three new photon emission processes 021 =a
,~

1112 Φ→Φ t
22121212

~,~ Φ→ΦΦ→Φ tt . The emitted photons are linearly polarized along the 
axis Oy. The rates of these transitions and the energies of the emitted photons are 

                      ,~,~, 11120
2
31

22

12int11 EEagH tt
y −+==ΦΦ ωωγ                        (78) 

                         ,~,~, 12120
2
32

22

12int12 EEagH tt
y −+==ΦΦ ωωγ                        (79) 

                         .~,~, 22120
2
33

22

12int22 EEagH tt
y −+==ΦΦ ωωγ                       (80) 

Because the separate state  is created by the non-radiative fast relaxation from the state t
12Φ 12

~Φ  

with the population  in the case 2
32a 121222

~~ EEE t <<  and from two states 12
~Φ  and 22

~Φ  with the 

populations  and in the case 2
32a 2

33a )~(~
122212 EEE t << , the population of the separate state  

equals  in the first case and  +  in the second case. 

t
12Φ

2
32a 2

32a 2
33a

If the radiation frequency 0ω is tuned to the value corresponding to the resonance between the 
biexciton and the ground state of the QD then three new peaks have following (relative) 
intensities and emitted photon energies:  
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              ,,
2
1)~( 121201112

stt EECI −++=′=Φ→Φ δωω                                             (81) 
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4)~( 12120

2

1212
stt EECI −+−Δ−=

+ΔΔ
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δ
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              ,)(
2
1,

)(
4)~( 12120

2

2212
stt EECI −++Δ+=

−ΔΔ
′=Φ→Φ δωω

δ
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             (83)  

where 

CC
)(

4 2

δ
λ
+ΔΔ

=′  if  121222
~~ EEE t <<

and 

 CC
2
1

=′  if . )~(~
122212 EEE t <<

However, at the resonance between the singlet exciton and the ground state of the QD in the 
case 1<<δλ  there are only two peaks with following (relative) intensities and emitted photon 
energies       

                 ,2,
2
1)~( 121201212

st EECI t −+++=′=Φ→Φ λδωω                      (84) 

                     ,2,
2
1)~( 121202212

st EECI t −+−+=′=Φ→Φ λδωω                     (85) 

where 

CC
2
1

=′  if  121222
~~ EEE t <<

and 

CC =′  if . )~(~
122212 EEE t <<

The rate of the transition 1112
~Φ→Φ t  is very small because 031 ≈a . 

Note that if 1212
~EE t > , then the above-mentioned suppression of the radiative transitions does not 

take place. 

6. CONCLUSION AND DISCUSSIONS 

The theory of the Rabi oscillations in the strongly correlated electron system of the two-level 
semiconductor QD based on the Green function method was presented. The three-level system 
of the two-electron states in the QD interacting with the linearly polarized electromagnetic 
radiation was investigated in details. The Rabi flopping of the populations of different states and 
the Rabi splitting in the photon emission spectra were considered. The structures of the emission 
spectra depend on the relative magnitudes of the biexciton binding energy δ2  and the effective 
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coupling constant λ  as well as on the magnitude and the sign of the fine-structure energy 
splitting constant  of the excitons due to the asymmetry of the QD. st EE 1212 −

In many experimental works [7, 14, 32 - 34] the QDs with the biexciton binding energies in the 
range from 2,5 meV to 3,5 meV were investigated. With the intensities of the pumping 
electromagnetic radiation used for the study of the Rabi oscillations in QDs the coupling 
constant λ  has the magnitudes in the range 50 - 100 µeV [3]. Therefore usually we have 

1<<δλ . On the other hand the magnitudes of the fine-structure energy splitting constants 

 of the excitons in the QDs investigated in different experiments [2, 8, 33, 34 - 37] 
have different values in a wide range from 6 µeV to 150 µeV. Note that if we change the linear 
polarization of the pumping electromagnetic radiation from the direction along the axis Ox to 
that along the axis Oy then the roles of two exciton states  and  with the energies  

and  will be interchanged. 

st EE 1212 −

s
12Φ t

12Φ
sE12

tE12

In each experiment with the given values of the parameters  and ts EEEE 12221211 ,,, λ  of the QD 
and the pumping electromagnetic radiation the positions and the (relative) intensities of the 
peaks in the spontaneous photon emission spectrum can be determined by the formulae 
presented in the preceding Section. As the first example consider the two-photon Rabi 
oscillations of the biexciton in the case 1212

~EEt > . If the biexciton binding energy δ2  is large, 
1<<δλ , then in the emission spectrum there are 4 peaks at the energies 

tsts EEEE 121201212000 )(
2
1,,)(

2
1, −++Δ−−+−+Δ−Δ− δωδωδωω  

with nearly the same intensity C
4
1 , other peaks being very weak. However, if the biexciton has 

the vanishing binding energy, 0=δ , then in the emission spectrum there are five observable 

peaks: two peaks at the photon energies Δ±
2
1

0ω  with the same intensity C
16
3  and the linear 

polarization along the axis Ox, one peak at the photon energy  with the intensity ts EE 12120 −+ω

C
4
1  and two peaks at the photon energies ts EE 12120 2

1
−+Δ±ω  with the same intensity C

16
1 , the 

emitted photons of all three last peaks having the linear polarization along the axis Oy. 

Consider now another example related to the experimental work [3]: the pumping 
electromagnetic radiation generates the resonant transitions between the ground state of the QD 
with a non-vanishing biexciton binding energy and the state of the singlet exciton. If 1<<δλ  

then in the case 1212
~EEt >  the emission spectrum has two peaks at the photon energies 

λω 220 ±  with the same intensity C
8
1 , the emitted photons being linearly polarized along 

the axis Ox, while in the case 121222
~~ EEE t <<  there are two peaks at the photon energies 

st EE 12120 2 −+±+ λδω  with the same intensity C
4
1  and the linear polarization of the 

emitted photons along the axis Oy. However, if λ  and δ  have the magnitudes of the same 
order then other emission spectra would be observed. This is the consequence of the influence 
of the biexciton on the Rabi oscillations between the exciton and the ground state of the QD. 
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Thus we have shown that the photon emission spectra of the two-level semiconductor QDs at 
the optical resonance regime have various structures depending on the biexciton binding energy 
and the degree of the asymmetry of the QD as well as on the choice of the resonance frequency. 
Until now mainly the QDs with the biexciton binding energies in the range from 2,5 meV to 3,5 
meV were investigated [7, 14, 32 - 34]. In a recent experiment [38] a QD with the biexciton 
binding energy 1,2 meV was fabricated. According to the calculations in the theoretical works 
[22] the biexciton binding energy may be negative. The blueshift of the biexciton luminescence 
line was also observed [39]. This means that the fabrication of the two-level semiconductor QDs 
with the biexciton binding energies in a range of several hundreds µeV and with different 
degrees of asymmetry is possible and would contribute significantly to the experimental study 
of the optical resonance in the electron system of the QDs.   

We have considered the semiconductor QD with the simplest electronic structure. In the reality 
instead of each bulk semiconductor energy band (conduction band or valence one) there is a set 
of different discrete energy levels in a semiconductor QD [40 - 45]. Therefore in each 
semiconductor QD there exist several exciton states called the “bright” excitons with the 
allowed dipole radiative transitions to its ground state. Although in the QD with the strong 
electron confinement the influence on the Rabi oscillations of an exciton state by other ones at 
the exact resonance may be neglected, as we have shown in an example in Sec.3, the existence 
of many exciton states as well as the presence of the wetting layer might cause a significant 
change of the photon spontaneous emission spectrum. Moreover usually the spin structures of 
the wave functions of the discrete energy states in the semiconductor QDs [40 - 45] are more 
complicated than the simplest one in the model considered in the present work. The Rabi 
oscillations in the semiconductor QDs with the complicated electronic structures of both above-
mentioned types will be studied in the subsequent works with the application of the method 
elaborated in this work. 
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