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ABSTRACT 

The torsional vibration phenomenon in the running gear of reciprocating engine systems is 
usually dealt with by considering a series of constant inertias connected by sections of massless 
shafting. However in reality, a slider crank mechanism is a vibrating system with varying inertia 
because the effective inertia of the total oscillating mass of each crank assembly varies twice per 
revolution of the crankshaft. Large variations in inertia torques can give rise to the phenomenon 
of secondary resonance in torsional vibration of modern marine diesel engines which can not be 
explained by conventional theory incorporating only the mean values of the varying inertias. In 
the past associated secondary resonances and regions of instability tended to be dismissed by 
most engineers as interesting but of no importance. The situation changed in recent years since 
there is evidence of the existence of the secondary resonance effects which could have 
contributed to a number of otherwise inexplicable crankshaft failures in large slow speed marine 
engines. The cyclic variation of the polar moment of inertia of the reciprocating parts during 
each revolution causes a periodic variation of frequency and corresponding amplitude of 
vibration of reciprocating engine systems. It also causes an increase in the speed range over 
which resonance effects are experienced and only a partial explanation of the behaviour of the 
systems has been worked out. It is impossible to avoid these instabilities by changes in the 
design, unless of course the variations in mass and spring constant can be made zero. In the 
present paper a critical appraisal of the regions of instability as determined from the equation of 
motion which takes into account variation of inertia is given. The motion in the form of complex 
waveforms is studied at different speeds of engine rotation. A comparison of theoretical results 
with Goldsbrough’s experimental results and Gregory’s analysis is included. 

1. INTRODUCTION 

It is well known that, in the case of reciprocating engines there are certain critical speeds of 
running at which the torsional vibrations in the shaft become large in amplitude and introduce 
an element of danger into the system. In the simple methods used for practical calculation of 
torsional vibrations, the reciprocating parts of the engine are replaced by an “equivalent mass” 
which is assumed to contribute to the elastic vibrations of the shaft in exactly the same way as 
the actual rather complicated slider-crank mechanism. This type of approximate analysis usually 
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leads to the design of crankshafts whose behaviour in practice is quite satisfactory. However, a 
number of engines are now in service whose pistons are so massive that their reciprocation gives 
rise to inertia variations substantial enough to excite troublesome torsional vibrations. Indeed, a 
number of unexpected torsional failures of crankshafts in large two-stroke marine diesel engines 
have occurred in practice and two of the cases are well documented by Archer [1]. The 
conventional vibration calculations in these engines indicated an nth order critical of small 
equilibrium amplitude occurring at or near resonance with the service speed being excited by 
large resultant engine excitations of order (n-2). This operating condition was considered 
acceptable, one order being close to the service speed but suitably small and the second being 
far enough above the service speed not to merit further investigation. Inspection of torsiograph 
records of the failed crankshafts, however revealed that the actual vibration stresses at service 
speed were three or four times larger than the calculated values. 

Goldsbrough [2] in his investigations has shown that, in the case of reciprocating engines, 
torsional vibrations of large amplitude occur within a series of ranges of instability, hence 
increasing the possibility of crankshaft failure in fatigue. Gregory [3] carried out further 
investigations by constructing solutions of the non-linear equation for an idealized single 
cylinder engine system. Draminsky [4, 5] attributed the presence of higher than expected 
stresses to the phenomenon of secondary resonance; that is to say, the possibility of a nth order 
critical of small equilibrium amplitude at or near resonance with the service speed being excited 
by large resultant engine excitations of order (n-2) and (n+2). Draminsky developed a theory 
based on a non-linear analysis and used an equivalent single cylinder engine model in which the 
crankshaft and all the pistons and connecting rods were represented by an equivalent single 
crank assembly. It was further suggested that in practice, only large (n-2) order excitation 
reinforced the vibration amplitude at order n causing excessive stress. 

Failures have not occurred in all cases of engines in service which were considered to be 
susceptible to secondary resonance. In view of this Carnegie and Pasricha [6] examined the 
torsional vibration behaviour of a ten-cylinder two-stroke-cycle engine with suspected 
secondary resonance. It was found that stress magnification due to secondary resonance failed to 
appear. Following this, Pasricha and Carnegie [7, 8] carried out further investigations to explain 
the secondary resonance phenomenon. It was realized that Draminsk’s work served only to 
indicate, in very broad terms, the circumstances in which adverse effects could be anticipated.  

It was against this background that the authors studied work done by researchers on the 
parametrically excited systems by Zevine [9], Zadoks and Midha [10, 11] and Hesterman and 
Stone [12].These methods tend to be specialized and the amount of information thus gained is 
inadequate for design situation. Further these methods do not provide waveform solutions at 
different speeds of the crankshaft. It is important to obtain these solutions as the harmonic 
analysis of the waveform responses can predict the order number of external excitations that 
have significant effect on the vibratory motion. Also the stability of such systems is the subject 
of great deal of current interest to the design engineers. 

The results of the present paper predict characteristics of motion, regions of instability and 
shapes of the complex waveforms at different speeds of the engine rotation. Keeping in view the 
importance of the variable ε that is the inertia ratio of the engine, two specific values of ε  have 
been examined for their effect on the vibratory behaviour of the system. One value of ε  covers 
nearly the largest of present-day slow-speed marine oil engines and the other on the lighter side 
for comparison of behaviour of the system. The purpose of this paper is to examine whether the 
above solutions are confirmed by the corresponding experimental findings of Goldsbrough [2] 
for regions of instability in the engines and then show the usefulness of theoretical waveform 
solutions which can predict the possibility of magnification of certain orders of motion leading 
to crankshaft failures due to secondary resonance. 
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2. THEORETICAL CONSIDERATIONS 

Figure 1 shows diagrammatically a single-cylinder reciprocating engine driving a heavy 
flywheel A of moment of inertia IA (a list of symbols is given in the notation). Assume that the 
reciprocating mass moves with simple harmonic motion and the gas pressure in the cylinder is 
omitted. 

 
Fig. 1: Diagrammatic arrangement of engine running gear 

The kinetic energy, T, of the system is given by    
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and neglecting the second and higher order terms, letting dashes represent differentiation with 
respect to τ , equation (4) becomes 
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Pasricha [13] has analysed equation (6) with the terms for external excitations added on to it to 
investigate the effect of phase angle and inertia ratio. The investigations of the present paper 
arise out of the importance of the parameter ε for the effect on the torsional vibration 
characteristics of the system. The quantity ε  represents the ratio of the equivalent moment of 
inertia of the reciprocating mass )( 2

2
1 Ma  to the total equivalent moment of inertia (I + 2

2
1 Ma ). 

Clearly ε is always less than unity. Two values of ε selected for investigations are ε  = 0.34 and 
ε = 0.236 since at these values corresponding experimental results are obtainable [2].    

Figures 2 and 3 show the responses of the system when ratios of angular velocity of the shaft to 
the natural frequency of the system are r = 1/12 and 1/10 for ε = 0.34. Fig. 4 is the waveform 
relationship of γ ∼ τ for the speed of the engine for  r = 1/12 and ε  = 0.236. These solutions are 
determined from equation (6) omitting gas forces with initial conditions γ = 1 and γ′ = 0 at τ = 0 
by use of Runge-Kutta-Merson method as described by Dimarogonas [14]. Fig. 5 shows the 
solution of the equation  for the speed of the engine at r = 0.5 when ε = 0.34. 
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Fig. 2:  Theoretical waveform relationship of γ ~ τ for r = 1/12 and ε = 0.34 
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Fig. 3:  Theoretical waveform relationship of γ ~ τ for r = 1/10 and ε = 0.34 
 

3.  DISCUSSION OF RESULTS 

Time responses determined from equation (6) for r = 1/12 and 1/10 for ε = 0.34, as in Figs. 2 
and 3 respectively, show the presence of beats and there are two beats in one revolution of the 
shaft. Similarly the solution of Fig. 4 at engine speed of r = 1/12 and ε = 0.236 shows a solution 
conforming to beat form. Several solutions for specific values of ε = 0.34 and ε = 0.236 are 
investigated over a range of r varying from 0.02 to 10. At lower values of r < 0.2 the solutions 
show the beat forms as described above. Beats at some values of r > 0.2 show no correlation 
between the frequency of one cycle of the response envelope and the speed of rotation as 
exhibited by time response of Fig. 5. 

Figures 6 and 7 show the variation of maximum amplitude (γmax) of displacement of torsional 
motion against the parameter r for ε = 0.34 and ε = 0.236 respectively. These Figures were 
constructed by observing maximum amplitudes of a number of steady state solutions obtained 
by direct numerical integration for various values of r. For r ≅ 1 and r ≅ ½ the pairs of broken 
vertical lines bound the regions of instability containing the two critical speed ranges in which 
the amplitude of vibration grows indefinitely large. Figure 5 shows the time response of the 
system at r = 0.5 and ε = 0.34 depicting the growth of maximum amplitude of motion near the 
critical speed range r ≅ ½. 
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Fig. 4: Theoretical waveform relationship of γ ~ τ for r = 1/12 and ε = 0.236 
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Fig. 5:  Theoretical waveform relationship of γ ~ τ for r = 0.5 and ε = 0.34  

 76 



 
 

AJSTD Vol. 23 Issues 1&2 
 

6

5

4

3

2

1

0
0.2 0.3 0.5 1 2 3 4 5 6 7 8 9100.1

max

 
Fig. 6: Maximum amplitude γmax of the response versus r for ε = 0.34 
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Fig. 7: Maximum amplitude γmax of the response versus r for ε = 0.236 
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Goldsbrough’s [2] experimental investigations for ε = 0.34 and ε = 0.236 showing the ranges of 
instability for r ≅ ½ and r ≅ 1, the corresponding theoretically determined values obtained from 
Figs. 6 and 7, and Gregory’s [3] results are tabulated for comparison in Table1. Goldsbrough’s 
experimental results and Gregory’s analysis are found to be in close agreement with the 
theoretical investigations of the present paper. The unstable range which occurs at r ≅ 1 
becomes very large for heavy pistons with substantial inertia variations.  

Table 1: Comparison of experimental and theoretical results for instability ranges when         
ε = 0.34 and 0.236 

UNSTABLE RANGE WHEN ε = 0.34 

For r ≅ ½ For r ≅ 1 

Goldsbrough’s 
[2] experimental 
results 

Theoretical 
Values 
 

Gregory’s 
[3] analysis

Goldsbrough’s 
[2] experimental 
results 

Theoretical 
Values 
 

Gregory’s 
[3] analysis 

I 

Maximum at 
r = 0.525 

r = 0.511 
to                
r = 0.521 

r = 0.512 
to                
r = 0.516 

r = 0.933 
to 
r = 1.154. 

r = 0.961 
to 
r = 1.16 

r = 0.966 
to 
r = 1.168 

UNSTABLE RANGE WHEN ε = 0.236 

For r ≅ 1/2 For ≅ 1 

Goldsbrough’s 
[2] Experimental 
results 

Theoretical
values 

Gregory’s
[3] 
analysis 

Goldsbrough’s 
[2] Experimental  
results 

Theoretical 
values 

Gregory’s 
[3] analysis II 

Maximum at  
r = 0.507 

r = 0.502 
to 

r = 0.508 

r = 0.506 
to 

r = 0.508 

r = 0.964 
to 

r = 1.107 

r = 0.963 
to 

r = 1.08 

r = 0.967 
to 

r = 1.09 

Table 2: Harmonic analysis results when ε = 0.34 and r = 1/10 

Harmonic No.a Resultant Magnitude Harmonic No.a Resultant Magnitude 

1 7.57 × 10-3 11 3.16 × 10-1 
2 2.46 × 10-2 12 2.79 × 10-1 
3 2.57 × 10-2 13 3.80 × 10-1 
4 2.76 × 10-2 14 4.46 × 10-2 
5 5.94 × 10-2 15 2.27 × 10-1 

6 2.34 × 10-2 16 1.07 × 10-1 
7 6.24 × 10-2 17 1.16 × 10-1 
8 3.36 × 10-1 18 1.05 × 10-1 
9 7.44 × 10-1 19 5.45 × 10-2 

10 8.03 ×10-1 20 8.91 × 10-2 
aOrder No. = 2 × Harmonic No. 
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In cases of failures which have occurred in practice, the working speeds of the engines have 
been such that r < 0.2 and hence the growth of amplitudes as shown in Fig. 5 near the region r ≅ 
½ should not have played a part in these failures. With this in view, harmonic analysis was 
carried out for the time responses of the system when r = 1/12 and r = 1/10 for ε = 0.34 as  
given in Fig. 2 and 3 respectively. The results of the analysis of the Figure for r = 1/10 are given 
in Table 2 for illustration. The analysis gives harmonic number and the resultant magnitude of 
each harmonic in radians. Since there are two beats in one revolution of the shaft at all speeds 
for r < 0.2, the order number is twice the harmonic number. 

The harmonic analysis of the waveform in Fig. 3 for r = 1/10 as given in Table 2 suggests that it 
is composed of a component of order 10 and the secondary components of order 6, 8, 12, 14, 16, 
18, etc. A similar analysis of the waveform solution of Fig. 2 for the speed of the engine for       
r = 1/12 and ε = 0.34, shows that the waveform contains a component of order 12 and secondary 
components of order 10, 14, 16, 18, 20 etc. Such an analysis gives the order of the principal 
component at a specific speed of the engine which can be excited to increased amplitudes by the 
exciting torques of the same orders as those of the secondary components. 

4. CONCLUSIONS 

The results presented in this paper give the analysis of the response of the variable inertia 
system representing a single-cylinder engine. The solutions thus determined, show the time 
response waveform shapes, maximum amplitudes and speeds of the engine at which the 
solutions are unstable and that the effects of variation in inertia are far more general than 
commonly suggested.  

Due to the effect of the cyclic variation of engine inertia of the reciprocating parts, unstable 
conditions can occur over an appreciable range of engine r.p.m., in two regions at r ≅ ½ and r ≅ 1 
without any externally applied excitation such as harmonic torque components arising from the 
cylinder gas pressure. For the same value of ε the unstable range which occurs at r ≅ ½ is 
smaller compared with that at r ≅ 1. For larger value of ε representing substantial increase in 
inertia variation, the unstable ranges become bigger in size. When the speeds of the engine are 
close to instability regions, the amplitudes become larger and grow indefinitely bigger within 
the regions. The regions of instability as determined in the analysis of this paper are in close 
agreement with Goldsbrough’s corresponding experimental results and Gregory’s analysis.  

In cases of failures which have occurred in practice, the working speeds of engine have been 
such that r < 0.2. For the speeds of engine within this range, the waveform solutions show the 
occurrence of a modulation of both amplitude and frequency conforming to the form of beats. It 
is also shown that there are two beats in one revolution of the shaft. 

The orders of the harmonic components of motion through which the energy can be transferred 
to the system from external excitations of the same orders can be determined from the harmonic 
analysis of the waveform solutions at the specific speed of rotation. This explains the possibility 
of an otherwise harmless principal component being magnified by the interaction with powerful 
secondary excitations. Thus dangerous vibrations may be evoked due to a secondary resonance 
phenomenon in marine diesel engines. 
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NOTATION 
 

maxγ  maximum amplitude of γ           
a  crank radius 
I  moment of inertia of rotating parts 
M  mass of reciprocating parts 
θ  angular displacement of crank from its datum position 

1θ  angular displacement of flywheel A 

r  ratio of angular velocity ω  of crankshaft to natural frequency nω  of system, with 
variable inertia effects neglected 

γ  displacement of torsional motion 

ε 2
2
1 Ma /(I+ 2

2
1 Ma )  

μ torsional stiffness of crankshaft 
ω  angular velocity of crankshaft 
ω n natural frequency of system, with variable inertia effects neglected,                                       

= [ ] 2/12
2
1 )/( MaI +μ  
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