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ABSTRACT 

A numerical investigation of turbulent swirling flows through an abrupt expansion tube is 
reported.  The TEFESS code, based on a staggered Finite Volume approach with the standard k-
ε model and first-order numerical schemes built-in, was used to carry out all the computations. 
The code has been modified in the present work to incorporate the ASM and two second-order 
numerical schemes.  The ASM, which includes the non-gradient convection terms arising from 
the transformation from Cartesian to cylindrical coordinates, was investigated for isothermal 
flows by applying it to the flow through an abrupt expansion tube with or without swirl flows.  
In addition, to investigate the effects of numerical diffusion on the predicted results, two 
second-order differencing schemes, namely, second-order upwind and the quadratic upstream 
interpolation, were used to compare with the first-order hybrid scheme.  An abrupt expansion 
tube with non-swirling flow, predicted results using both the k-ε model and the ASM were in 
good agreement with measurements.  For swirling flows, the calculated results suggested that 
the use of the ASM with a second-order numerical scheme leads to better agreement between 
the numerical results and experimental data, while the k-ε model is incapable of capturing the 
stabilizing effect of the swirl. 

Key words: Algebraic Reynolds stress model (ASM), k-ε turbulence model, abrupt expansion 
tube, Swirl flow. 

Nomenclature  

Cε1, Cε2 constants in the dissipation rate equation 
C  convection term 
Cμ  constant in the k-ε turbulence model 
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D  diffusion term; dimension 
Do  pipe or tube diameter 
d  centre core jet diameter 
G  stress generation 
k  turbulence kinetic energy 
l  turbulence characteristic length scale 
p   mean pressure  

Pij, P  production rate of stress component 
r  radial co-ordinate; radius 
R  radius of pipe or tube 
S  general source term; swirl number 
t  time 
tij  viscous stress tensor 

'
iu   fluctuating velocities in direction xi  

''
jiuuρ  Reynolds stresses 

u  time-averaged velocity in x-direction 
v  time-averaged velocity in r-direction 
w  time-averaged velocity in θ-direction 
x  axial co-ordinate 

Greek Symbols 

β, λ  turbulence model constants 
δij  Kronecker delta tensor 
ε, εij  dissipation, local dissipation tensor  
φ  generalised dependent variable 
Φij  local pressure-strain or redistribution term 
Γφ  exchange coefficient  
μ, tμ  dynamic viscosity, eddy-viscosity or turbulent viscosity 

ρ          density 
θ  circumferential co-ordinate 
σφ  Schmidt or Prantl numbers for the scalar φ 
τij  Reynolds stress tensor 

Subscripts 

e   effective 
t  turbulence 
i, j, k  Cartesian indices 

Superscripts and Overbars 

′          fluctuating quantity in time-averaging 
⎯  mean quantity 
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1. INTRODUCTION 

Swirl flows have been of considerable interest over the past decades because of their occurrence 
in industrial applications, such as furnaces, utility boilers, internal combustion engines, gas 
turbine combustors and dust collectors [1, 2]. Swirl has been used in combustion systems to 
enhance the flame stability, the mixing and heat transfer besides prolonging the fuel residence 
time and abating the pollutants. This is because under appropriate conditions, swirl can be 
employed to induce a central recirculation zone. The recirculating flow generates additional 
turbulence in the shear layer between the reverse flow and the surrounding forward flow and 
helps stabilize the flame in combustors. Swirling turbulent flows are physically complex in 
nature due to the effect of a swirl-turbulence interaction. The turbulence structure in swirling 
turbulent flows is generally highly non-isotropic and non-homogeneous.  

Computation of swirling flows is a difficult and challenging task. Large velocity gradients 
appear in these flows, so numerical problems and turbulence modelling play a significant role in 
their analysis. The commonly used, the k-ε model may not be suitable for simulating swirling 
turbulent flows [1]. It is also found that the use of modified k-ε models or even the non-linear k-
ε model [3] leads to no significant improvement of the predictions in swirling flows. The 
second-order moment closure models, i.e., the Reynolds stress model (RSM) and the algebraic 
Reynolds stress model provide better methods for the simulation of swirling turbulent flows [4, 
5, 6], but sometime, the original ASM based on Rodi’s approximation [7] cannot give 
satisfactory results for certain aspects of swirling flows [3]. The RSM is regarded as a most 
logical approach to the turbulence closure problem, which does not need any ad hoc 
modification for extra strain rates. However, in the prediction of swirling flows with the RSM, it 
is necessary to solve a total of 11 governing differential equations of elliptic type: a continuity 
equation, three momentum equations, an ε-equation, and six equations for the Reynolds stresses. 
This leads to much extra computational effort to solve six Reynolds stress transport equations 
simultaneously [4, 5, 6] and much attention needs to be paid to numerical stability and inlet 
boundary conditions. It is for this reason that a simplified algebraic Reynolds stress turbulence 
model in axisymmetric cylindrical co-ordinates is employed for simulating strongly swirling 
flows. 

This article deals with the numerical simulation of the flow through an abrupt expansion tube 
with and without swirl by utilising the present ASM and various numerical schemes. The 
mathematical model including the turbulence models, numerical solution and other 
computational details is described. Comparisons of the calculated gas tangential and axial 
velocities with the test data measured in a sudden enlargement duct [8, 9] are made to evaluate 
the turbulence models and the numerical schemes used. 

2.  MATHEMATICAL FORMULATION 

2.1 Governing Equations 

The phenomenon under consideration is governed by the steady two-dimensional axisymmetric 
form of the continuity and the time-averaged incompressible Navier-Stokes equations. In the 
Cartesian tensor system these equations can be written in the following form: 
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where ρ, ui, p and xi are the density, mean velocity tensor, mean pressure and coordinate tensor 
respectively. The mean viscous stress tensor, ijt , is approximated as: 
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where μ is laminar viscosity. The time-averaged Reynolds stress tensor, τij = - ''
jiuuρ , in the 

above equation is not known and thus, models are needed to express it in terms of the solution 
variables. In the present study, two turbulence models are used, namely the k-ε model and an 
algebraic stress model (ASM). The k-ε model has been reviewed in references [10, 11] and it 
will be described briefly. The standard k-ε  model version relates the turbulent eddy viscosity to 
the turbulence kinetic energy k and the dissipation rate ε  through Boussinesq’s approximation 
as: 
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where ερμ μ
2kCt =  is the turbulent eddy viscosity and ε  is the dissipation rate of turbulence 

kinetic energy (TKE). The modelled equation of the TKE, k is given by: 
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in which  μe = μt + μ is effective viscosity. Similarly the dissipation rate of TKE is given by the 
following equation: 
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where G is the rate of generation of the TKE while ρε  is its destruction rate. G is given by: 
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The boundary values for the turbulent quantities near the wall are specified with the wall 
function method [10]. Cμ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and σε = 1.3 are empirical 
constants [10, 11] in the turbulence transport equations. Reynolds-averaged transport equations 
can be solved for τij, [10, 11] the modelled equations for which are: 
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ijij ρεδε
3
2 tensorndissipatio local ==  

in which  C1 = 2.5, and C2 = 0.55 are model constants. 

2.2    Algebraic Reynolds Stress Model (ASM) 

For simplicity in solving the six Reynolds stresses, Rodi’s approximation [7] is used in this 
study and the Reynolds stress transport can be expressed in algebraic form as follows: 
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Substitution of eqs. (5) and (8) into eq. (9) gives the desired algebraic expression for τ ij : 
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The ASM expressions can thus be rewritten as: 
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where the empirical constant λ ,was found to be 0.135, [12] is defined as: 
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2.3 Common Form for the Equations 

All the governing equations can be re-organised and expressed in a standard form that includes 
the convection, diffusion, and source terms for 2-D axisymmetric flows as follows: 
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where φ  may stand  for  any variable including the  velocity components, Γ
φx  and Γ

φr are the 
exchange coefficients for φ, and Sφ  is the source term. 

2.4 Solution Procedure 

In the present computation the time-averaged Navier-Stokes equations, equations (1) and (2); 
the TKE equation, equation (5); the TKE dissipation rate equation, equation (6) are solved 
numerically by a control-volume finite-difference method [13, 14] together with the turbulence 
model equations, equation (4) for the k-ε model or equation  for the ASM. The SIMPLE 
algorithm is utilised for pressure-velocity de-coupling and iteration [13, 14]. The discretization 
of the governing equations is accomplished by means of the upwind, the hybrid, the second-
order upwind (SOU) and the quadratic upstream interpolation for convective kinematics 
(QUICK) schemes and the source term linearisation on a staggered grid cell. The 
underrelaxation iterative TDMA line-by-line sweeping technique is used for solving the 
resultant finite-difference equations. Due to the highly non-linear and coupling features of the 
governing equations for swirling flows, lower underrelaxation factors ranging from 0.005 to 0.1 
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are chosen for the three velocity components to ensure that the stability and convergence of the 
iterative calculation. Wall function was used for calculating wall shear stresses at the grid nodes 
along the walls. The exit boundary was chosen at the center tube outlet where zero gradient 
conditions were adopted for all variables except the axial velocity u, which is subject to 
continuity constraints. The computation was carried out using a PC computer. About 20,000 
iterations were needed to achieve satisfactory convergence for each calculation case, which 
requires about 3 hr of computer time. 

3.  ABRUPT EXPANSION TUBE FLOW OF YOON (1982) 

An experimental study of the turbulent swirling flows through an abrupt expansion tube [8, 9] 
for which measurements are available was selected to validate the model. This flow 
arrangement shown in Fig. 1 had initial velocity and fluid properties as shown in Table 1. A 
single air stream entered the test section through a secondary annulus and passed through an 
adjustable vane swirler as shown in the figure.  The inlet swirl vanes of the swirl generator with 
a central hub that had been blocked-off were set at an angle of 0 or 38 degrees. The secondary 
annulus expanded into a test chamber whose diameter was twice that of the secondary tube.  An 
expansion block was inserted to position the exit plane of the swirl generator and its hub was 
0.032 m upstream of the expansion plane. The hub and the swirl give rise to a significant reverse 
flow along the axis besides the recirculation zone near the plane of expansion. Experimental 
mean velocity profiles were provided at the expansion with which to initiate the code 
predictions. In the present computation, performances of both the standard k-ε model and the 
ASM with four different discretization schemes, namely, upwind, hybrid, SOU and QUICK, are 
examined by comparing the predicted velocity profiles at four locations, namely, x = 0.149, 
0.298, 0.448, and 0.597 m for both non-swirling and swirling flows. 

 

Table 1:     Data for flow through an abrupt expansion tube 

 
Test section characteristics 

 swirl vane angle (degree)   0    38  

 chamber length (m)    1.50    same  

 chamber dia. (m)     0.2984   same  

 secondary inside dia. (m)   0.1492   same 

 hub (swirler) dia. (m)    0.0373   same  

Inlet fluid properties  (Air) 

 air temp. (K)     293.15   same 

 air pressure (Pa)     100125.0   same 

 air density (kg/m3)    1.190    same  

Inlet flow conditions 

 mass flow rate (kg/s)    0.3063   0.2048  

 average velocity (m/s)    15.7    10.5  
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expansion block
vane swirler

test section

 
Fig. 1:  Schematic illustration of test chamber and inlet geometry 

4.  RESULTS AND DISCUSSION 

4.1  Non-swirling Flow 

 

Fig. 2a:  Effect of grid distributions on the velocity profiles for the k-ε model 

First, the effect of grid sizes on the solution was investigated with two grid densities of 50 × 30 
and 90 × 50 and is shown in Figs. 2a and 2b for the k-ε model and the ASM, respectively. It is 
seen that both grids give nearly similar predictions for each turbulence model, indicating that a 
grid of 50 × 30 or finer led to results that were sufficiently grid-independent. The effects of 
numerical schemes on the predicted results were also examined with a 50 × 30 grid and are 
presented in Figs. 3a and 3b for both the turbulence models. It is noted that, except for some 
minor differences, all schemes yield almost identical results. Further examination reveals that 
the QUICK and the SOU results are more accurate than those from the other schemes when 
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compared with the experimental data. The predicted radial profiles of axial and radial velocities 
for the ASM and the k-ε model using the QUICK scheme are compared in Fig. 4. The ASM led 
to better overall agreement between predicted and measured axial velocity profiles although the 
slight under-prediction is visible in the near inlet region. Radial velocity predictions by both the 
turbulence models fail to match the experimental data. This flow has also been calculated by 
Sloan et al. [15] with only the k-ε model and their results closely match those obtained here. 
They also reported that the integrated experimental mass flow rates differed from the input mass 
flow rate by as much as 25 - 30%. 

 

Fig. 2b:  Effect of grid distributions on the velocity profiles for the ASM 

4.2 Swirling Flow 

4.2.1 Predictions with the standard k-ε turbulence model 

The effect of grid sizes on the calculated results was examined and the results are compared 
with measurements at four downstream stations. Figure 5 shows the sensitivity of the QUICK 
scheme and different grid densities to the predicted axial and tangential velocity profiles. The 
axial velocity variation along the centre-line is shown in Fig. 6. Grids finer than 40 × 20 give 
almost the same results, especially at locations far from the inlet. Close to the inlet, however, 
finer the grid spacing led to a more accurate solution. The tangential velocity predictions with 
the k-ε model display a rapid decay to a forced vortex profile (solid-body rotation) while the 
experimental data correspond to a combined free and forced vortex profile as evident from     
Fig. 5. The results of Fig. 6 indicate that the predicted axial velocity recovers and progresses to 
uniformity at a faster rate than in the measurements. The effect of different discretization 
schemes on the predicted axial and tangential velocity distributions for the four schemes used is 
presented in Fig. 7 with a 60 × 30 grid. It is found that the QUICK and the SOU generally give 
better results than the other two, upwind or hybrid.  
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Fig. 3a:  Comparison of the k-ε model predicted velocity profiles with measurements 

 
Fig. 3b:  Comparison of the ASM predicted velocity profiles with measurements 
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Fig. 4:  Comparison of predictions using the k-ε model and the ASM with measurements 

 
Fig. 5:  Sensitivity of different grid densities to velocity profiles 
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Fig. 6:  Axial velocity distributions along the centerline 

 
Fig. 7:  Effect of various numerical schemes on the axial and tangential velocity profiles  

Streamlines and velocity vectors predicted by the k-ε model are shown in Figs. 8 and 9 
respectively. Two recirculation zones are identified; one is at the corner and the other, an 
internal recirculation zone (IRZ), near the inlet. It is clear that the tangential velocity predictions 
do not agree with the measured data even for trends.  Since the calculations were fairly free of 
numerical diffusion, discrepancies between the data and the predictions can be attributed to two 
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sources: - improper boundary conditions at the inlet plane and deficiencies of the turbulence 
model. All inlet values except the ε and the k, were obtained indirectly from the experiment. The 
values of ε were derived from a constant length-scale assumption and those of k from an 
approximation of total kinetic energy. To study the sensitivity of the inlet ε and k profiles to the 
flow field, calculations were made using different ε and k distributions, by increasing or 
decreasing their estimated values by a factor of 10.  It was found that the calculated velocity was 
not affected significantly. The poor agreement between the predictions and measurements is, 
therefore, more likely to be due to the deficiencies of the turbulence model, as observed by 
many other past investigator. 

 
Fig. 8:  Streamlines predicted by the k-ε model 

 
Fig. 9:  Vector plots of velocity predicted by the k-ε model 

4.2.2     Predictions with the ASM 

Predictions using the ASM are compared with those from the k-ε model and data from the 
measurement. The effects of various discretization schemes on the ASM results are as 
significant as in the case of the k-ε model calculations. Results with the QUICK or the SOU 
were closest to the measured data, and hence only results with the QUICK scheme will be 
discussed here. The radial distributions of axial and tangential velocities predicted by the ASM 
are compared with the measurements in Fig. 10.  These results were obtained using the QUICK 
scheme, β = 0.4, and different grid size distributions. Grids finer than 40 × 20 appear to yield 
solutions which were sufficiently grid - independent.  The use of ASM results in better overall 
agreement with the measurements than possible with the k-ε model. The major difference 
between calculations with the two turbulence models is most clear in the recirculation region 
and in the tangential velocity profiles. The agreement between the calculation with the ASM and 
the experimental data is fairly good. The peak values and a combined forced and free (Rankine) 
vortex motion for the tangential velocity profiles are well predicted. The recirculation zone 
(IRZ) is, however, longer and wider than that with the k-ε model. 

Figure 11 shows the variation of centre-line axial velocity for the QUICK scheme and different 
grid densities.  It is found that grids finer than 40 × 20 give nearly the same results. The negative 
and positive peaks in the profiles are well predicted. In comparison with the measurements, the 
ASM performs better than the k-ε model. The effect of β on the ASM results is shown in Fig. 12 
that presents the radial profiles of axial and tangential velocities.  It is found that a value of β 
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between 0.3 and 0.4 appears to give the best agreement between prediction and measurement.  
The ASM with added convection (β > 0) under-predict the axial velocity profiles in the core 
region if β is larger than 0.4 but predict well their maximum values. In addition, the peak values 
of the tangential velocity profiles are slightly under-predicted for all β values at downstream 
locations. Streamlines and velocity vectors predicted with the ASM are illustrated in Fig. 13 and 
Fig. 14 respectively. It is observed that the size of the recirculation zone calculated by the ASM 
is larger than that for the k-ε model.  

 
Fig. 10:  Comparison of measurements with the ASM predictions using various grids 

 
Fig. 11:  Comparison of measurements with predicted centerline axial velocity profiles 
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Fig. 12: Comparison of the ASM predictions using different β values (60 × 30, QUICK) with 

measurements  

 
Fig. 13:  Streamlines predicted by the ASM 

 
Fig. 14: Vector plots of velocity predicted by the ASM 
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The flows of Yoon [8] were also predicted by Sloan et al. [15] using a 38 × 35 grid with a 
modified hybrid/power-law differencing scheme and the same inlet conditions as the present 
study. Four different turbulence models, namely, the k-ε model, LPS Richardson number (a 
modified k-ε model for swirling flows), the algebraic stress model, and the algebraic stress 
model with added convection, were used. The results with the k-ε model were similar to the 
present calculations with the k-ε model and an upwind scheme. Their predictions by the 
algebraic stress model and the LPS Richardson number differ only marginally from those with 
the standard k-ε model while the algebraic stress model with added convection led to slightly 
better predictions but not as good as the present ones, although their model was based on the 
same assumptions.  This can be attributed to (1) a coarse grid, (2) numerical diffusion and (3) 
improper boundary conditions at the inlet plane. Numerical experimentation has shown that, for 
sufficiently accurate results with the QUICK scheme, a grid of at least 20 × 25 was needed 
between the inlet and one diameter from it in order to cover the central toroidal recirculation 
zone. With the duct length of around 10 diameters, the 38 × 35 grid used in their predictions was 
probably not sufficiently fine near the inlet region. Also, Nikjooy and Mongia [16] have 
reported the use of first-order differencing schemes for the transport equations introduces 
significant numerical diffusion for a coarse grid. The measured inlet stress profiles were not 
provided and Reynolds stress estimation for the ASM at the inlet can be difficult. In their 
predictions, Sloan et al. reported that dominant stresses from a plausible approximation were 
used as input and the remainder was calculated theoretically from the model. Erroneous inlet 
conditions can have a substantial effect on the predicted flow field. Abujelala and Lilley [17] 
also calculated the flows of Yoon. Conditions used in their calculations are the same as the 
Sloan et al. cases except that they used the experimental inlet profile shapes measured by 
Sander and Lilley [18], at flow rates different from those of Yoon. Their predictions are similar 
to those of Sloan et al., and show the same rate of decay of swirl velocity profiles, and manifest 
the same lack of agreement. 

5.  CONCLUSION 

In the present work, a numerical study has been conducted to investigate flow-field 
characteristics in an abrupt expansion tube. From the computation results, it can be concluded as 
follows: 

• The major difference between calculations with the two turbulence models is most clear 
in the recirculation region and in the tangential velocity profiles. The calculated results of 
gas tangential and axial velocities using both the k-ε model and the ASM are in generally 
good agreement with the measurements. 

• Influences of the numerical schemes for convection transport are found to be significant 
in simulating annular swirling turbulent flows. The computations show that the use of the 
QUICK and the SOU leads to better agreement between the numerical results and 
experimental data than the upwind and hybrid schemes. 

• It is found that a value of β between 0.3 and 0.4 appears to give the best agreement 
between prediction and measurement. 
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