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ABSTRACT 

The moment method in statistical dynamics is used to study the equation of state and 
thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the 
lattice vibrations and hydrostatic pressures. The explicit expressions of  the lattice constant, 
thermal expansion coefficient, and the specific heats  of the bcc metals are derived 
within the fourth order moment approximation. The thermodynamic quantities of  W, Nb, Fe, 
and Ta metals are calculated as a function of  the pressure, and they are in good agreement with 
the corresponding results obtained from the first principles calculations and experimental 
results. The effective pair potentials work well for the calculations of  bcc metals. 

PV CC ,

1. INTRODUCTION 

The study of high pressure behaviour of materials has become quite interesting in recent years 
since the discovery of new crystal structures and due to many geophysical and technological 
applications. A lot of theoretical models have been proposed in order to predict the P-V-T 
equation of state (EQS) at the high pressure domain. Using the input data as the volume , the 
bulk modulus ,etc., at the available low-pressure, these EQS models predict the high-
pressure behaviours of materials. However, the results obtained from these semi-empirical  
models depend on the input data and the kinds of model.  
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0TB

So far, most path integral Monte Carlo (PIMC) [1, 2] and path integral molecular dynamic (PIMD) 
[3, 4] have been restricted to the calculation of structural and thermal properties of quantum solids 
or to the calculation of equations of state of condensed rare gases. Within the framework of the 
density-functional theory (DFT) [5], the thermodynamic properties of  solids under a constant 
pressure can be calculated from the first-principles caculations . For ordered solids, the free energy 
at finite temperature has contributions from both the lattice vibrations and the thermal excitation of 
electrons. In the quasiharmonic approximation, the free energy is calculated by adding a dynamical 
contribution which is approximated by the free energy of a system of harmonic oscillators 
corresponding to the crystal vibrational modes (phonons)- to a static contribution- which is 
accessible to standard DFT calculations [6]. Vibrational modes are treated quantum mechanically, 
but the full Hamiltonian is approximated by a harmonic expansion about the equilibrium atomic 
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positions. Anharmonic effects are included through the explicit volume dependence of the 
vibrational frequencies. The static high pressure properties of the transition metals (for example 
tantalium with the body centred cubic (bcc) structure) obtained from the first principles by using 
the linearizing augmented plane wave (LAPW) method [7, 8]. Calculations based on various semi-
empirical models [9 - 12] as well as on the first-principles methods [13 - 16] demonstrate that the 
quasiharmonic approximation provides a reasonable description of the dynamic properties of many 
bulk materials below the melting point. 

In the present study, we use the moment method in statistical dynamic [17 - 20] to investigate 
the equation of state and thermodynamic properties of  bcc metals. We will calculate the 
temperature and pressure dependence of the nearest neighbour distance and the thermodynamic 
properties of bcc metals. 

The format of the present paper is as follows: In Sec. 2, the equation of state and the 
temperature and pressure dependence of thermodynamic properties of  bcc metals are given. 
The calculation results of  thermodynamic properties of  W, Nb, Fe and Ta metals at various 
pressures are presented  and discussed in Sec. 3 . 

2. EQUATION OF STATE OF  BCC METALS 

2.1. Pressure versus volume relation 

The pressure versus volume relation of the lattice is [17] 
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4 a  for the bcc lattice. Using eq.(1), one can find the nearest 

neighbour distance  at pressure P and temperature T. However, for numerical calculations, it 
is convenient to determine firstly the nearest neighbour distance   at pressure P and at 
absolute zero temperature T = 0. For T = 0 temperature, eq. (1) is reduced to 
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For simplicity, we take the effective pair interaction energy in metal systems as the power law, 
similar to the Lennard-Jones 
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where  are determined to fit to the experimental data (e.g., cohesive energy and elastic 
modulus). For bcc metals we take into account the first nearest, second, third, fourth and fifth 
nearest neighbour interactions. 

0,rD

Using the effective pair potentials of Eq.(3), it is straighforward to get the interaction energy 
 and the parameter k in the crystal as     0U
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where  is the mass of particle, 0m 0ω is the frequency of lattice vibration, and ,... are the 
structural sums for the given crystal and defined by 
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here  is the coordination number of i-th nearest neighbour atoms with radius  (for bcc 
lattice  rk = υkao                              

iZ ir

       υ1 = 1,  Z1 = 8;   υ2 = 
3
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                    υ3 = 
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                  υ5 = 2,   Ζ5 = 24, ... ). 

For bcc crystals, structural sums equal to 
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From eqs. (2), (4), and (6) we obtain equation of state of bcc crystal at zero temperature     
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Equation (8) can be transformed to the form 
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In principle Eq. (9) permits to find the nearest neighbour distance  at zero temperature 
and pressure P. Using the MAPLE V program and the values of  parameters D and  
determined by the experimental data [21] (Table 1), Eq. (9) can be solved, we find the values of 
the nearest neighbour distance  at temperature T = 0 and pressure P. Calculated results 
for the nearest neighbour distance  of  W, Nb, Ta and Fe metals at zero temperature and 
pressure P are presented in the Table 2. 
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2.2  Thermodynamic quantities of  bcc metals at high pressure 

For the calculation of the lattice spacing of the crystal at finite temperature and pressure P, we 
now need fourth order vibrational constants γ  and k at pressure P and T = 0 K defined by 
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Using the effective pair potentials of Eq. (3), the parameter γ  of  the bcc crystal has the form 
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where the structural sums equal to 
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Using the  obtained results of nearest neighbour distance  ( Table 2) and Eqs. (5), (7), 
(13) and (14), we find the values of parameters , and 

)0,(Pa
)0,(Pk )0,(Pγ  at pressure P and T = 0K. 

The thermally induced lattice expansion yo(P,T) at pressure P and temperature T is given in a 
closed formula using the force balance criterion of the fourth order moment approximation as 
[17, 18] 
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Then, one can find the nearest neighbour distance  at pressure P and temperature T as ),( TPa

                             ),()0,(),( 0 TPyPaTPa +=  .                                                 (18)      
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Using  the above formula of distance , we can find the change of the crystal volume  at 
temperature T as 
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Let us now consider the compressibility of the solid phase (bcc metals). The isothermal 
compressibility can be given as  
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Furthermore, from the definition of the linear thermal expansion coefficient, one obtains the 
following formula 
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We find the free energy of the crystal using the statistical moment method  as [17, 19] Ψ
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Then, the energy of  the crystal equal to 
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where  represents the sum of effective pair interaction energies and the second term in the 
above Eq. (23) given the contribution from the anharmonicity of thermal lattice vibrations and 
the fourth order vibrational constants 

0U

21,γγ  defined by Eq. (12). Then, the specific heat at 
constant volume   is given by VC

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−++++= )

sinh
coth2

sinh
()

sinh
1(

3sinh
coth)

3
2(2

sinh
3 2

24

4

4

22

2
1

2

3
1

222

2

x
xx

x
x

x
xxx

kx
xNkC BV γ

γγ
γθ

                                                                                                                                                  (24) 
The specific heat at constant pressure , the adiabatic compressibility PC Sχ , and isothermal 
bulk moduli  are determined from the well known thermodynamic relations TB
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One can  now apply the above formulae to study the thermodynamic properties of  bcc metals 
under hydrostatic pressures. The pressure dependences of the crystal volume, isothermal 
compressibility, specific heats and the linear thermal expansion coefficient are calculated self-
consistently with the lattice spacing of the given bcc crystals. 

3. RESULTS AND DISCUSSION 

In order to check the validity of the present moment method for the study of the thermodynamic 
properties of the metallic systems described herein, we performed calculations for pure metals 
W, Ta , Fe and Nb. Using the experimental data of the parameters D and r0 ( Table 1), and the 
MAPLE V program, Eq.(9) can be solved, we find the values of the nearest neighbour distance 
a (P, 0) at temperature T = 0 and pressure P for W, Ta, Fe, and Nb metals. Using the  obtained 
results of the nearest neighbor distance a(P, 0) (Tables 2) and Eqs. (5), (13), we find the values 
of parameters k(P, 0), and )0,(Pγ  at pressure P  and temperature T = 0 K.  

Table 1:  Parameter D  and  determined by the experimental data [21]  0r

metal n m )(/ KkD B  )A(r o
0  

W 
Ta 
Fe 
Nb 

11 
12 
10 
9 

4 
4 
4,5 
4 

11278.8 
8508.1 
4649.6 
8307.3 

2.7365 
2.8648 
2.4775 
2.8648 

Table 2:  Calculated results for the nearest neighbour distance a(P, 0) at zero temperature 
and pressure P 

)(GPaP  0 25 50 100 150 200 250 300 

W 
Ta 
Fe 
Nb 

2.65810    
2.78708 
2.40855 
2.77483    

2.60516 
2.71489 
2.33255 
2.68292     

2.56788    
2.66884 
2.28627 
2.62648    

2.51506 
2.60737 
2.22589 
2.55262   

2.47719 
2.56511 
2.17497 
2.50249   

2.44756
2.53277
2.15390
2.46439  

2.42318 
2.50656 
2.12882  
2.43363  

2.40245  
2.48451 
2.10778 
2.40784    

With the use of  the expresions obtained in Sec. 2, we calculate the values of the lattice lattice 
constant, , the bulk modulus, , the specific heats at constant volume and constant 
pressure,C  and C ,  and the linear thermal expansion coefficient, 

a TB
V p α  for W, Ta, Fe and Nb 

metals. The calculated results are presented in Tables 3 - 8 and Figs. 1- 4. 

Table 3 shows the lattice constants and bulk moduli for all of the bcc metal studied here, 
comparing them to first-principles LDA calculations, the tight-binding (TB) results [23], and to 
experiment [24, 25]. The lattice constant and bulk modulus at temperature T = 300 K and zero 
pressure calculated by the present theory are in good agreement with the first-principles results 
and experimental data. The lattice constant is within 2% of the SMM values for all of the bcc 
metals. Similarly, the bulk moduli are in excellent agreement with the experimental results, 
within < 1% for  W, Fe, and Nb metals except tantalum, where the error is 9%. We not that for 
the bulk moduli of W, Fe and Nb metals, the present calculations give much better results 
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compared to those by previous theoretical calculations.  

Table 3:  Calculated results for the lattice constant, , and bulk modulus, , at  T = 300 
K and   P = 0, comparing the results of tight-binding parametrization (TB), first-
principles local density approximation (LDA) [23] results and  experiment (Expt.) 
(Refs. 24 and 25) 

a TB

a (Ao) TB (GPa)  

SMM TB LDA Expt. SMM TB LDA Expt. 

W 

Ta 

Fe 

Nb 

3.0754 

3.2298  

2.7924  

3.2130     

3.14   

3.30   

2.71   

3.25         

3.14        

3.24  

---- 

3.25         

3.16    

3.30 

2.87   

3.30         

320.034 

218.626 

170.088 

169.125   

319 

185 

281 

187 

333 

224 

--- 

193 

323 

200 

168 

170 

In Table 4 we compare with the first-principles calculations and experiment the zero pressure 
volume,V , and the bulk moduli,  for Ta and W metals. We show in Table 4 the results 
obtained by A. Strachan et al. [26] using the linearized augmented plane wave method with the 
GGA (denoted as LAPW-GGA) and the Embedded Atom Model force fields (named qEAM 
FF), and zero temperature calculations using full potential linear muffintin orbital method within 
the GGA approximation and with spin orbit interactions (denoted as FP LMTO GGA SC) by 
S derlind and Moriarty [27]. The results obtained by Y. Wang et al. [29] using the density-
functional theory (denoted as DFT), and room temperature experimental values by Cynn, Yoo 
[28] and A Dewaele et al. [30] are  also presented in Table 4. The present SMM calculations of  
the bulk mudulus and zero pressure volume at absolute zero and room temperatures agree well 
with the experimental values and previous theoretical calculations. The zero pressure 
volume,V , is in excellent agreement with the experimental results, within ~0.5% for W metal 
except tantalum, where the error is ~6%. 

0 TB

o&&

0

Table 4:  Comparison between ab initio, present study (SMM) and experimental results for  
Ta and  W metals 

  T(K) )A(V
3o

0  TB (GPa) Ref. 

Ta 
 
 
 
 
 
 
 
W 

 
LAPW-GGA  
qEAM FF 
FP LMTO GGA SC  
SMM 
qEAM FF   
Expt.   
SMM                             
                  
DFT    
SMM   
Expt.                             

 
0 
0 
0                  
0    
300  
300    
300              

 
18.33    
18.36      
17.68       
16.67   
18.40   
18.04  
16.81     
 
16.26     
15.775     
15.862           

 
188.27  
183.04   
203 
---       
176         
194.7 ± 4.8    
218.626          

 
26               
26 
27 
present 
            
28 
present 
 
29 
present 
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The Figs. 1 and 2  show the ratio  V/ = 0V
3

0 ),0(
),(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Ta
TPa

V
V , and bulk moduli for  W, Nb and Ta 

metals as the functions of the pressure P. The present SMM calculations for the ratio  V/  are 
in good agreement with experimental results which taken from McQueen et al [31] for Nb and 
Ta; and from McQueen and Marsh [32] for W. The lattice constants decrease due to  the effect 
of  increasing pressure, therefore the bulk modulus becomes larger. The Fig. 3 shows the bulk 
modulus  of  the W, Nb and Ta metals as a function of the temperature T at various pressures 
P. We have found that the bulk modulus,  depends strongly both on the temperature and the 
pressure. The decrease of  with increasing temperature arises from the thermal lattice 
expansion and the effects of the vibration entropy. 
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 35



 
 
Vu Van Hung, et al                                      Equation of state and thermodynamic properties of BCC metals 
 
 

    

    b) Ta 

       

  nce of the bulk modulus for W, Nb and Ta metals at various 
temperatures T 

Table 5 sho ats at constant volume and constant pressure, CC , , calculated by 
 to experim

erimen

         

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200

Pressure (GPa)

B
ul

k 
m

od
ul

us
 (G

Pa
)

T = 300 K

T = 1000 K

T = 2000 K

T = 2500 K

 

 

 

 

 

 

 
 

    a) W 

       

 

 

 

 

 

 

  
c) Nb  

Fig. 2: Pressure depende

ws the specific he PV

the present SMM calculations for the W, Nb and Ta metals, comparing them ent [22]. 
The present SMM calculations for PC  are in good agreement with the exp tal results. The 
lattice specific heats VC  and PC  at constant volume and at constant pressure are calculated 

0 
200 
400 
600 
800 

1000 

0 100 200

Pressure P (GPa)

1200 

T = 300 K

T = 1000K

T = 2000K

B
ul

k 
m

od
ul

us
 (G

Pa
) 

0
200
400
600
800

1000
1200
1400
1600

100 200 300

Pressure P (GPa)

B
ul

k 
m

od
ul

us
 (G

Pa
)

0

T = 300 K
T = 1000 K
T = 2000 K
T = 3000 K

 36 



 
 

AJSTD Vol. 23 Issues 1&2 

using Eqs. (24) and (25), respectiv . However, the evalutions  by Eqs. (24) and (25) are the 
lattice contributions, a  we do not include the contributions of lattice vacancies and electronic 
parts of the specific heats VC . The calculated values of the lattice specific heats VC  and PC  by 
the present SMM may not be directly compared with the corresponding experimental values for 
high temperature region ear the melting temperature, but the temperaturedependence 
(curvature) of PC  for the W, Nb and Ta metals  is in agreement with the experimental results. 
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 200 300 500 600 800 1200 1500 2000 2500 3000 

Table 5: Thermodynamic quantities of  W. Nb, and Ta metals at pressure P = 0 and 
temperature T

 

T(K) 

W            

 CV(cal/mol.K) 45 5.67 5.75 76 5.73 5.  59 48 36 24 

b 

V(cal/mol.K) 5.  5. 3 5.  5.  5. 8 5.  5.  5. 4 

a 

V(cal/mol.K) 5.  5. 9 5.  5.  5. 7 5.  5.  5. 0 5.  4.  

5. 5. 65 5. 5. 5. 5.

 CP(cal/mol.K) 5.54 5.82 6.01 6.07 6.15 6.29 6.39 6.56 6.72 6.92 

       Expt.[22] --- --- 6.09 --- 6.34 --- 6.91 7.33 7.74 8.15 

N            

 C 39 6 72 71 6 57 49 3   

 CP(cal/mol.K) 5.52 5.85 6.10 6.18 6.32 6.55 6.72 7.02   

        Expt.[22] --- 5.95 --- 6.24 6.43 6.81 --- 7.58   

T            

 C 54 6 73 71 6 55 46 3 14 98

 CP(cal/mol.K) 5.66 5.89 6.07 6.12 6.22 6.39 6.51 6.73 7.06 8.05 

        Expt.[22] 5.75 6.08 6.38 6.46 6.57 6.76 6.90 7.11   

The va e   c a s rted n  Tab  

abl

the specific heat  for Ta, W, and Nb metals at various 

Metal
        T(K)

100 300 500 700 1000 1500 2000 2500 

riations in temp rature of  the specifi  heat at const nt pres ure,C , repo  i le 6,P

show that the specific heat PC  depends strongly on the temperature. T e 7 shows  indeed that 

the specific heat at constan essure, PC , is a strong function of pressure for W, Nb and Ta 
metals.  

Table 6: Temperature dependence of 

t pr

PC
pressures P.  

   

s P(GPa) 

50 3.6173 5.6529 5.8903 5.9758 6.0485 6.1442 6.2475 6.3684 
Ta 

100 2.9697 5.5122 5.8290 5.9348 6.0127 6.0951 6.1701 6.2518 

50 3.3908 5.5978 5.8545 5.9398 6.0030 6.0717 6.1368 6.2096 
W 

100 2.8305 5.4718 5.8033 5.9098 5.9825 6.0504 6.1057 6.1625 

50 2.7711 5.4573 5.7972 5.9060 5.9797 6.0495 6.1095 6.1741 
Nb 

100 2.0821 5.2584 5.7173 5.8618 5.9539 6.0290 6.0829 6.1346 
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Table 7: sur h c a a  
temperatures T 

Metals 
T(K) 

0 25 50 100 150 

Pres e dependence of t e specifi  heat C  for W, Nb and T  metals t variousP

         P(GPa) 

300 5. 0 5.  5. 8 5.  5  820 6672 597 4718 .3577

1  W 000 6.2201 6.1123 6.0030 5.9825 5.9638 

2500 6.7203 6.3409 6.2096 6.1625 6.1317 

300 5.8504 5.5705 5.4573 5.2584 5.0833 

1  Nb 000 6.4340 6.1893 5.9797 5.9539 5.9292 

2000 7.0207 6.4209 6.1095 6.0829 6.0621 

300 5.8905 5.7318 5.6529 5.5122 5.3861 

1  Ta 000 6.3043 6.1721 6.0485 6.0127 5.9857 

2500 7.0602 6.5743 6.3684 6.2518 6.1912 

In Table 8, we sh  linea l expansion coeffi  Nb a etals us 
pressure a function mp  obt we

      

Ta  metals at various pressures  P ( in 10

ow the
of te

r therma
erature, T,

cient for
 our calcul

nd Ta m
ations, as 

 at vario
ll as the ained from

experimental values at zero pressure [22]. The present SMM calculations for the linear thermal 
expansion coefficient are in good agreement with the experimental results. The present 
formalism takes into account the quantum-mechanical zero-point vibrations as well as the 
higher-order anharmonic terms in the atomic displacements and it enables us to derive the 
thermodynamic quantities of  the bcc metals for a wide temperature range. Fig. 4 shows that the 
thermal expansivity as a function of pressure. Theory predicts the thermal expansivity to drop 
rapidly with pressure, and the temperature dependence to decrease. These results are in good 
agreement with the first-principles calculations reported by R. E. Cohen and O. Gulsenren [16].    

Table 8:  Temperature dependence of the linear thermal expansion coefficient  for  Nb and 
16 −− K ) 

Metals 
 P(GPa) 

100 300 500 600 800 1000 1200 1600 1900 2000 2500 
        T(K) 

0 

Expt.[22] 4.30 7.00 --- 7.90 8.30 --- 8.90 9.90 10.0 --- --- 

3.85 7.01 7.41 7.65 7.78 7.85 8.05 8.27 8.55 8.60 8.93 

50 1.50 3.80 4.00 4.05 4.10 4.15 4.20 4.35 4.42 4.45 4.55 
Nb 

0 

 

4.43 6.15 6.80 7.05 7.18 7.28 7.42 7.58 7.69 7.82 8.18 

100 0.92 2.83 2.95 3.00 3.05 3.10 3.15 3.22 3.25 3.27 3.32 

Expt.[22] --- --- 6.80 --- 7.10 7.30 --- --- --- 8.40 --- 

50 2.01 3.65 3.85 3.86 3.88 3.90 3.93 3.96 3.99 4.00 4.04 
Ta 

100 1.05 2.42 2.66 2.68 2.70 2.71 2.74 2.77 2.78 2.79 2.83 
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4.  CO LUSION 

ulations are performed by using the ef

NC

M calc fective pair potential for the W, Fe, Nb and 
a metals. The use of the simple potentials is due to the fact that the purpose of the present 

study is to gain a general understanding of the effects of the anharmonicity of the lattice 
a n the thermodynamic properties for the bcc metals. 

In the present study, we have used effective pair potentials for metal atoms to demonstrate the 

 applications of the 

.E., Berne, B.J., Marlyna, G.J., and Klein, M.L. (1993), J. Chem. Phys., vol. 

namics in 

8.  the LAPW method, Kluwer 

 l. B43, p. 5024. 
 

 ., and Mockrodt, W.C. 

16. , Phys. Rev., vol. B63, p. 224101. 
 165; 

9, p. 2067. 
. 094301. 

21. (1987), J. Fiz. Khimic, vol. 61, p.1003. 

The SM
T

vibr tion and pressure o

utility of the present theoretical scheme based on the moment method in the statistical dynamics. 
The method is simple and physically transparent, and thermodynamic quantities of metals with 
bcc structures can be expressed in closed forms within the fourth order moment approximation 
of the atomic displacements. The present formalism is not restricted to the
effective pair potentials, but it is also incorporated with the energetics based on the ab initio 
electronic theory. In general, we have obtained good agreement in the thermodynamic quantities 
between our theoretical calculations and first-principles results, and experimental values. 
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	EQUATION OF STATE AND THERMODYNAMIC PROPERTIES OF BCC METALS
	In the present study, we use the moment method in statistical dynamic [17 - 20] to investigate the equation of state and thermodynamic properties of  bcc metals. We will calculate the temperature and pressure dependence of the nearest neighbour distance and the thermodynamic properties of bcc metals.
	The format of the present paper is as follows: In Sec. 2, the equation of state and the temperature and pressure dependence of thermodynamic properties of  bcc metals are given. The calculation results of  thermodynamic properties of  W, Nb, Fe and Ta metals at various pressures are presented  and discussed in Sec. 3 .
	Equation (8) can be transformed to the form
	                                            .       (19)
	The specific heat at constant pressure  , the adiabatic compressibility  , and isothermal bulk moduli   are determined from the well known thermodynamic relations



