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ABSTRACT

The moment method in statistical dynamics is used to study the equation of state and
thermodynamic properties of the bcc metals taking into account the anharmonicity effects of the
lattice vibrations and hydrostatic pressures. The explicit expressions of the lattice constant,

thermal expansion coefficient, and the specific heats C,,,C, of the bcc metals are derived

within the fourth order moment approximation. The thermodynamic quantities of W, Nb, Fe,
and Ta metals are calculated as a function of the pressure, and they are in good agreement with
the corresponding results obtained from the first principles calculations and experimental
results. The effective pair potentials work well for the calculations of bcc metals.

1. INTRODUCTION

The study of high pressure behaviour of materials has become quite interesting in recent years
since the discovery of new crystal structures and due to many geophysical and technological
applications. A lot of theoretical models have been proposed in order to predict the P-V-T

equation of state (EQS) at the high pressure domain. Using the input data as the volume V, the

bulk modulus B, .etc., at the available low-pressure, these EQS models predict the high-

pressure behaviours of materials. However, the results obtained from these semi-empirical
models depend on the input data and the kinds of model.

So far, most path integral Monte Carlo (PIMC) [1, 2] and path integral molecular dynamic (PIMD)
[3, 4] have been restricted to the calculation of structural and thermal properties of quantum solids
or to the calculation of equations of state of condensed rare gases. Within the framework of the
density-functional theory (DFT) [5], the thermodynamic properties of solids under a constant
pressure can be calculated from the first-principles caculations . For ordered solids, the free energy
at finite temperature has contributions from both the lattice vibrations and the thermal excitation of
electrons. In the quasiharmonic approximation, the free energy is calculated by adding a dynamical
contribution which is approximated by the free energy of a system of harmonic oscillators
corresponding to the crystal vibrational modes (phonons)- to a static contribution- which is
accessible to standard DFT calculations [6]. Vibrational modes are treated quantum mechanically,
but the full Hamiltonian is approximated by a harmonic expansion about the equilibrium atomic
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positions. Anharmonic effects are included through the explicit volume dependence of the
vibrational frequencies. The static high pressure properties of the transition metals (for example
tantalium with the body centred cubic (bcc) structure) obtained from the first principles by using
the linearizing augmented plane wave (LAPW) method [7, 8]. Calculations based on various semi-
empirical models [9 - 12] as well as on the first-principles methods [13 - 16] demonstrate that the
quasiharmonic approximation provides a reasonable description of the dynamic properties of many
bulk materials below the melting point.

In the present study, we use the moment method in statistical dynamic [17 - 20] to investigate
the equation of state and thermodynamic properties of bcc metals. We will calculate the
temperature and pressure dependence of the nearest neighbour distance and the thermodynamic
properties of bcc metals.

The format of the present paper is as follows: In Sec. 2, the equation of state and the
temperature and pressure dependence of thermodynamic properties of bcc metals are given.
The calculation results of thermodynamic properties of W, Nb, Fe and Ta metals at various
pressures are presented and discussed in Sec. 3.

2. EQUATION OF STATE OF BCC METALS
2.1. Pressure versus volume relation

The pressure versus volume relation of the lattice is [17]

Pv=-a Eauio_l_@(cothxi% (l)
6 oOa 2k oa
where yx = hﬂ,g =kgT and P denotes the hydrostatic pressure and v is the atomic volume v =
20
VIN of the crystal, being v :f’Fa3 for the bcc lattice. Using eq.(1), one can find the nearest
3V3

neighbour distance a at pressure P and temperature T. However, for numerical calculations, it
is convenient to determine firstly the nearest neighbour distance a(P,0) at pressure P and at

absolute zero temperature T = 0. For T = 0 temperature, eq. (1) is reduced to

Pv=-a Eauio_khwoaik . 2
6 oa 4k oa

For simplicity, we take the effective pair interaction energy in metal systems as the power law,

similar to the Lennard-Jones
o(n=_P |pl] _pk ©)
(h—m) r r

where D, r, are determined to fit to the experimental data (e.g., cohesive energy and elastic

modulus). For bcc metals we take into account the first nearest, second, third, fourth and fifth
nearest neighbour interactions.

Using the effective pair potentials of Eq.(3), it is straighforward to get the interaction energy
U, and the parameter Kk in the crystal as

UO: D r70n_ r_70m |
(n—m){mA"(aj ”Ar"(aH “
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where m, is the mass of particle, @ is the frequency of lattice vibration, and A , A ... are the
structural sums for the given crystal and defined by

An:Zj; Am:ZU_.r;] (6)

z

2
_iz i,xaix
a2 i Uin

here Z, is the coordination number of i-th nearest neighbour atoms with radius r, (for bcc

lattice 1, = via,
vi=1, Z;=8; UZZ\/E, 22:6
3

L3 = §, Z3=12; 1)4:\/ﬁ, Z4:24
3 3

L5 = 2, Z5 = 24, )

For bcc crystals, structural sums equal to

_ 6 12 24 8
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3 3 3
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From egs. (2), (4), and (6) we obtain equation of state of bcc crystal at zero temperature
Dnm r\ r\"
Pv=_"" o | _ Do | |+
6(n—m){A“(aJ Al2) }

{(n+2) (n+2)A" An+2(r°)n—<m+2)[(m+2> a%A—AMI“’jm}

(D a a) | @

a4«/m 2(n m) ) , r\"
{<n+2> AMI;) —[(m+2)Ai':4—An+zI;) }
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Equation (8) can be transformed to the form

4 c yn+4_C ym+4
P-—r03=0y”+3—c ym+3+ 3 4 , (9)
3V3 ' ’ Gy —cgy"
where y = LO,
a
¢,z A,. Dnm
6(n—m)
c,= A, _DPm_
6(n—m)

1
4F‘/2< o202 AL
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e P e 2lme At -]

Cs = (n + 2) A’?i}4 - A1+2
6= (M+2) A%, —A . (10)

In principle Eqg. (9) permits to find the nearest neighbour distance a(P,0) at zero temperature
and pressure P. Using the MAPLE V program and the values of parameters D and r,

determined by the experimental data [21] (Table 1), Eq. (9) can be solved, we find the values of
the nearest neighbour distance a(P,0) at temperature T = 0 and pressure P. Calculated results

for the nearest neighbour distance a(P,0) of W, Nb, Ta and Fe metals at zero temperature and
pressure P are presented in the Table 2.

2.2 Thermodynamic quantities of bcc metals at high pressure

For the calculation of the lattice spacing of the crystal at finite temperature and pressure P, we
now need fourth order vibrational constants 7 and k at pressure P and T = 0 K defined by

4
S [ R R A I TR (i
. ou; " ou; ouy, «

1 oo, 1 oo
= = = S V.= —=—=>|6 o : (12)
1 484 [( aul JJ 2 482‘ (aufxaufy .

Using the effective pair potentials of Eq. (3), the parameter y of the bcc crystal has the form

Dnm

= {[(n +2)(n+4)(n+ 6)( %o+ 6 ) 18(n +2)(n + 4) A%,

V=
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where the structural sums equal to
2,2

o 1 «Z,a a2 1 o Lin @@
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Using the obtained results of nearest neighbour distance a(P,0) ( Table 2) and Egs. (5), (7),
(13) and (14), we find the values of parameters k(P,0), and »(P,0) at pressure P and T = OK.

The thermally induced lattice expansion y,(P,T) at pressure P and temperature T is given in a
closed formula using the force balance criterion of the fourth order moment approximation as
[17, 18]

27(P,0)0>
yé(P,T)=37k(3(P)O) AP.T) (15)
where
AP,T) = a,+ 7 (P00 5 | 7(P0)°67 a3+7(P0)9 a,, (16
k(P,0)* k(P,0)° k(P,0)°
a4 =14 xcoth x
1= y
2
_13 47

+—xcothx+§x coth2x+lx coth®x
6 6 2

a3 =- (25+121xcothx+50x coth2x+16x coth3x+£x4coth4x )
3 6 3 3 2
43+%xcothx+169 2coth2x+83x coth3x+gx4coth4x+%x500th5x,
fiw(P,0
:M7Q(P,O)= k(P,O). (17)
20 m,

Then, one can find the nearest neighbour distance a(P,T) at pressure P and temperature T as

a(P,T)=a(P,0)+y,(P,T) . (18)
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Using the above formula of distance a(P,T), we can find the change of the crystal volume at
temperature T as

AV _a’(P,T)-a’(P.0)

= (19)
\Y; a’(P,0)
Let us now consider the compressibility of the solid phase (bcc metals). The isothermal
compressibility can be given as
3[a(P,T)]3
P a(P,0) (20)
2
2P + 3 o
4a(P,T)N

Furthermore, from the definition of the linear thermal expansion coefficient, one obtains the
following formula

=kBZT (aPJ _ IKBZTLGZIP (21)
3 \o8), 4a®> 3N 8«95&

We find the free energy W of the crystal using the statistical moment method as [17, 19]

¥~ SN{éUO +O[x+ In(l—ezx)]}+

2y xcothx) 20 4 xcothx,|. (22
x?coth? x—=2L| 2 Z[=y%xcothx(l+ —=
3N92 7/2 3 ( + 2 ) [ 7 2 (+ 2 )
’ x coth x
=2(y! +2y.7,) 1+ )1+ xcoth x)]

Then, the energy of the crystal equal to

2 2 3
Ez3N{1UO+@<cothx}+M y,x? coth? x+22{ 2.+ x2 -2y, x_co';hx (23)
6 k? 3 sinh“ x sinh“ x

where U, represents the sum of effective pair interaction energies and the second term in the
above Eq. (23) given the contribution from the anharmonicity of thermal lattice vibrations and
the fourth order vibrational constants y,,y, defined by Eq. (12). Then, the specific heat at
constant volume C,, is given by

x? X

x? 20 7, X% coth x L7 N 2x* coth? x
———+—| 2y, + 2 L - +
sinh?x  k® {( & 3) inh? ( sinh? x) }/Z(sinh“x sinh? x )

C, :SNKB{

(24)
The specific heat at constant pressure C,, the adiabatic compressibility ., and isothermal

bulk moduli B, are determined from the well known thermodynamic relations

9TV C 1
g Y=Ly .andB = (25)

C,=C, +
’ ' VA o Xt
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One can now apply the above formulae to study the thermodynamic properties of bcc metals
under hydrostatic pressures. The pressure dependences of the crystal volume, isothermal
compressibility, specific heats and the linear thermal expansion coefficient are calculated self-
consistently with the lattice spacing of the given bcc crystals.

3. RESULTS AND DISCUSSION

In order to check the validity of the present moment method for the study of the thermodynamic
properties of the metallic systems described herein, we performed calculations for pure metals
W, Ta, Fe and Nb. Using the experimental data of the parameters D and ry ( Table 1), and the
MAPLE V program, Eq.(9) can be solved, we find the values of the nearest neighbour distance
a (P, 0) at temperature T = 0 and pressure P for W, Ta, Fe, and Nb metals. Using the obtained
results of the nearest neighbor distance a(P, 0) (Tables 2) and Egs. (5), (13), we find the values
of parameters k(P, 0), and y(P,0) at pressure P and temperature T = 0 K.

Table 1:  Parameter D and I, determined by the experimental data [21]

metal n m D/kg (K) r,(A°)

w 11 4 11278.8 2.7365

Ta 12 4 8508.1 2.8648

Fe 10 4,5 4649.6 24775

Nb 9 4 8307.3 2.8648
Table 2: Calculated results for the nearest neighbour distance a(P, 0) at zero temperature

and pressure P

P(GPa) 0 25 50 100 150 200 250 300
W 2.65810 2.60516 2.56788 2.51506 2.47719 2.44756 2.42318 2.40245
Ta 2.78708 2.71489 2.66884 2.60737 2.56511 2.53277 2.50656 2.48451
Fe 2.40855 2.33255 2.28627 2.22589 2.17497 2.15390 2.12882 2.10778
Nb 2.77483 2.68292 2.62648 2.55262 2.50249 2.46439 2.43363 2.40784

With the use of the expresions obtained in Sec. 2, we calculate the values of the lattice lattice
constant, a, the bulk modulus, B;, the specific heats at constant volume and constant

pressure,C,, and Cp, and the linear thermal expansion coefficient, a for W, Ta, Fe and Nb
metals. The calculated results are presented in Tables 3 - 8 and Figs. 1- 4.

Table 3 shows the lattice constants and bulk moduli for all of the bcc metal studied here,
comparing them to first-principles LDA calculations, the tight-binding (TB) results [23], and to
experiment [24, 25]. The lattice constant and bulk modulus at temperature T = 300 K and zero
pressure calculated by the present theory are in good agreement with the first-principles results
and experimental data. The lattice constant is within 2% of the SMM values for all of the bcc
metals. Similarly, the bulk moduli are in excellent agreement with the experimental results,
within < 1% for W, Fe, and Nb metals except tantalum, where the error is 9%. We not that for
the bulk moduli of W, Fe and Nb metals, the present calculations give much better results
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compared to those by previous theoretical calculations.

Table 3:  Calculated results for the lattice constant, @, and bulk modulus, B;, at T = 300

Kand P =0, comparing the results of tight-binding parametrization (TB), first-
principles local density approximation (LDA) [23] results and experiment (Expt.)
(Refs. 24 and 25)

a(A°) B, (GPa)
SMM  TB LDA  Expt.  SMM TB  LDA  Expt
w 3.0754  3.14 3.14 3.16 320034 319 333 323
Ta 32298  3.30 3.24 3.30 218626 185 224 200
Fe 27924 271 2.87 170.088 281 -~ 168
Nb 32130 325 3.25 3.30 169.125 187 193 170

In Table 4 we compare with the first-principles calculations and experiment the zero pressure
volume,V, and the bulk moduli, B, for Ta and W metals. We show in Table 4 the results
obtained by A. Strachan et al. [26] using the linearized augmented plane wave method with the
GGA (denoted as LAPW-GGA) and the Embedded Atom Model force fields (named qgEAM
FF), and zero temperature calculations using full potential linear muffintin orbital method within
the GGA approximation and with spin orbit interactions (denoted as FP LMTO GGA SC) by
S 0 derlind and Moriarty [27]. The results obtained by Y. Wang et al. [29] using the density-
functional theory (denoted as DFT), and room temperature experimental values by Cynn, Yoo
[28] and A Dewaele et al. [30] are also presented in Table 4. The present SMM calculations of
the bulk mudulus and zero pressure volume at absolute zero and room temperatures agree well
with the experimental values and previous theoretical calculations. The zero pressure
volume,V, is in excellent agreement with the experimental results, within ~0.5% for W metal

except tantalum, where the error is ~6%.

Table 4: Comparison between ab initio, present study (SMM) and experimental results for
Taand W metals

T(K) V, (A%) B, (GPa) Ref.

Ta

LAPW-GGA 0 18.33 188.27 26

gEAM FF 0 18.36 183.04 26

FP LMTO GGA SC 0 17.68 203 27

SMM 0 16.67 present

gEAM FF 300 18.40 176

Expt. 300 18.04 1947+ 4.8 28

SMM 300 16.81 218.626 present
w

DFT 16.26 29

SMM 15.775 present

Expt. 15.862 30
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3
The Figs. 1 and 2 show the ratio V/V,= i = @ , and bulk moduli for W, Nb and Ta
V, a(o,T)

metals as the functions of the pressure P. The present SMM calculations for the ratio V/V, are

in good agreement with experimental results which taken from McQueen et al [31] for Nb and
Ta; and from McQueen and Marsh [32] for W. The lattice constants decrease due to the effect
of increasing pressure, therefore the bulk modulus becomes larger. The Fig. 3 shows the bulk
modulus B, of the W, Nb and Ta metals as a function of the temperature T at various pressures

P. We have found that the bulk modulus, B; depends strongly both on the temperature and the
pressure. The decrease of B, with increasing temperature arises from the thermal lattice
expansion and the effects of the vibration entropy.

1.
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Fig. 1: Pressure dependence of the ratio of V /V,, for W, Nb and Ta metals
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Fig. 2: Pressure dependence of the bulk modulus for W, Nb and Ta metals at various

temperatures T

Table 5 shows the specific heats at constant volume and constant pressure,C,, ,C,, , calculated by

the present SMM calculations for the W, Nb and Ta metals, comparing them to experiment [22].
The present SMM calculations for C, are in good agreement with the experimental results. The

lattice specific heats C, and C, at constant volume and at constant pressure are calculated
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using Egs. (24) and (25), respectively. However, the evalutions by Eqgs. (24) and (25) are the
lattice contributions, and we do not include the contributions of lattice vacancies and electronic
parts of the specific heats C,, . The calculated values of the lattice specific heats C, andC, by

the present SMM may not be directly compared with the corresponding experimental values for
high temperature region near the melting temperature, but the temperaturedependence
(curvature) of C,, for the W, Nb and Ta metals is in agreement with the experimental results.

. 1500
©
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e
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© -
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@ 0 ; ; ‘
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o o o

o
o 1

2000 4000
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3 00 -k'\'\ﬂ —>¢— P =180 GPa
S 200 4
X MH_‘
=2 o
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Fig.3:  Temperature dependence of the bulk modulus for W, Nb and Ta metals at various
pressures P
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Table 5:  Thermodynamic quantities of W. Nb, and Ta metals at pressure P = 0 and
temperature T

T(K) 200 300 500 600 800 1200 1500 2000 2500 3000

Cy(cal/mol.K) 545 5,67 575 576 573 565 559 548 536 524
Cp(cal/mol.K) 554 582 6.01 6.07 6.15 629 639 656 6.72 6.92

Expt.[22] - 609 - 634 - 691 733 774 815
Nb
Cy(cal/mol.K) 539 563 572 571 568 557 549 534
Cp(cal/mol.K) 552 585 6.10 6.18 6.32 6.55 6.72 7.02
Expt[22] -~ 595 -- 624 643 681 -~ 758
Ta

Cy(cal/mol.K) 554 569 573 571 567 555 546 530 514 498
Cp(cal/mol.K) 566 589 6.07 6.12 6.22 639 651 6.73 7.06 8.05
Expt.[22] 575 6.08 6.38 6.46 657 6.76 6.90 7.11

The variations in temperature of the specific heat at constant pressure, C,, , reported in Table 6,
show that the specific heat C, depends strongly on the temperature. Table 7 shows indeed that

the specific heat at constant pressure, C,,, is a strong function of pressure for W, Nb and Ta
metals.

Table 6: Temperature dependence of the specific heat C, for Ta, W, and Nb metals at various
pressures P.

Metal T 400 300 50 700 1000 1500 2000 2500
S P(GPa)
50 36173 5.6529 5.8903 509758 6.0485 6.1442 6.2475 6.3684
1 100 2.9697 55122 58290 59348 6.0127 6.0951 6.1701 6.2518
50 3.3908 55978 5.8545 59398 6.0030 6.0717 6.1368 6.2096
" 100 2.8305 5.4718 5.8033 509098 509825 6.0504 6.1057 6.1625
" 50 27711 54573 57972 59060 5.9797 6.0495 6.1095 6.1741

100 2.0821 5.2584 5.7173 5.8618 5.9539 6.0290 6.0829 6.1346
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Table 7:  Pressure dependence of the specific heat C, for W, Nb and Ta metals at various
temperatures T

(GPa)
Metals 0 25 50 100 150
T(K)

300 5.8200 5.6672 5.5978 5.4718 5.3577
w 1000 6.2201 6.1123 6.0030 5.9825 5.9638
2500 6.7203 6.3409 6.2096 6.1625 6.1317
300 5.8504 5.5705 5.4573 5.2584 5.0833
Nb 1000 6.4340 6.1893 5.9797 5.9539 5.9292
2000 7.0207 6.4209 6.1095 6.0829 6.0621
300 5.8905 5.7318 5.6529 5.5122 5.3861
Ta 1000 6.3043 6.1721 6.0485 6.0127 5.9857
2500 7.0602 6.5743 6.3684 6.2518 6.1912

In Table 8, we show the linear thermal expansion coefficient for Nb and Ta metals at various
pressure a function of temperature, T, obtained from our calculations, as well as the
experimental values at zero pressure [22]. The present SMM calculations for the linear thermal
expansion coefficient are in good agreement with the experimental results. The present
formalism takes into account the quantum-mechanical zero-point vibrations as well as the
higher-order anharmonic terms in the atomic displacements and it enables us to derive the
thermodynamic quantities of the bcc metals for a wide temperature range. Fig. 4 shows that the
thermal expansivity as a function of pressure. Theory predicts the thermal expansivity to drop
rapidly with pressure, and the temperature dependence to decrease. These results are in good
agreement with the first-principles calculations reported by R. E. Cohen and O. Gulsenren [16].

Table 8: Temperature dependence of the linear thermal expansion coefficient for Nb and
Ta metals at various pressures P (iin 10 K ‘1)

Metals {09 100 300 500 600 800 1000 1200 1600 1900 2000 2500
P(GPa)
0 38 701 741 765 778 785 805 827 855 860 893
Expt[22] 430 700 -- 790 830 --- 890 990 100 ---

Nb 50 150 380 4.00 405 410 4.15 420 435 442 445 455
100 092 283 295 3.00 305 310 315 322 325 327 332
0 443 615 680 705 718 7.28 742 758 769 7.82 8.18
Expt[22] --- - 680 -—-- 710 7.30 - - - 840 -

Ta 50 201 365 385 386 388 390 393 396 399 400 4.04
100 105 242 266 268 270 271 274 277 278 279 283
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4. CONCLUSION

The SMM calculations are performed by using the effective pair potential for the W, Fe, Nb and
Ta metals. The use of the simple potentials is due to the fact that the purpose of the present
study is to gain a general understanding of the effects of the anharmonicity of the lattice
vibration and pressure on the thermodynamic properties for the bcc metals.

In the present study, we have used effective pair potentials for metal atoms to demonstrate the
utility of the present theoretical scheme based on the moment method in the statistical dynamics.
The method is simple and physically transparent, and thermodynamic quantities of metals with
bcc structures can be expressed in closed forms within the fourth order moment approximation
of the atomic displacements. The present formalism is not restricted to the applications of the
effective pair potentials, but it is also incorporated with the energetics based on the ab initio
electronic theory. In general, we have obtained good agreement in the thermodynamic quantities
between our theoretical calculations and first-principles results, and experimental values.
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	EQUATION OF STATE AND THERMODYNAMIC PROPERTIES OF BCC METALS
	In the present study, we use the moment method in statistical dynamic [17 - 20] to investigate the equation of state and thermodynamic properties of  bcc metals. We will calculate the temperature and pressure dependence of the nearest neighbour distance and the thermodynamic properties of bcc metals.
	The format of the present paper is as follows: In Sec. 2, the equation of state and the temperature and pressure dependence of thermodynamic properties of  bcc metals are given. The calculation results of  thermodynamic properties of  W, Nb, Fe and Ta metals at various pressures are presented  and discussed in Sec. 3 .
	Equation (8) can be transformed to the form
	                                            .       (19)
	The specific heat at constant pressure  , the adiabatic compressibility  , and isothermal bulk moduli   are determined from the well known thermodynamic relations



