Tap chi Khoa hoc Céng nghé va Thuc pham 18 (2) (2019) 29-40

ON NONLOCAL BVPs FOR DIFFERENTIAL INCLUSIONS
OF FRACTIONAL ORDER

Phan Dinh Phung

Ho Chi Minh City University of Food Industry

Email: pdphungvn@gmail.com

Received: 23 March 2019; Accepted for publication: 5 June 2019

ABSTRACT

In this paper, we consider a class of boundary value problems (BVPs) in a separable
Banach space E, which is a fractional differential inclusion associated with multipoint
bounday conditions, of the form

Deu(t) e F(t,u(t),D*'u(t)), ae. t[0,1],
Iu()|_ =0, u@) = riéu(ni)’

where D“ is the Riemann-Liouville fractional derivative operator of order & € (1, 2],
S €[0,2—«], Fis aclosed valued multifuction. With some certain suitable conditions we
prove that the set of the solutions to the problem is nonempty and is a retract in space
W),

Keywords: fractional differential inclusion, boundary value problem, Green’s function,
contractive set valued-map, retract.

1. INTRODUCTION

Differential equations of fractional or arbitrary order which is so-called fractional
differential equations have recently demonstrated to be strongly tools in the modelling of
many physical phenomena (see [1-4]). Consequently there has an increasing interest in
studying the initial value problems and especially BVPs for fractional differential equations
(see [5-17] and references therein).

El-Sayed and lbrahim have initiated the study of fractional differential inclusions in [11].
In recent years, several qualitative results involving fractional differential inclusions are
established, for instance, in [9, 18, 19]. However, most of that on fractional differential
equations or inclusions are devoted to the solvability in the case that the nonlinear terms is
independent of derivatives of unknown function. Moreover, there are very few studies
considering such a problem in the general context, like Banach spaces. In this note, with E is
a separable Banach space, we consider the following problem

Du(t) e F(t,u(t), D“*u(t)),ae.,te[0,1], (1.1)
t (t — )AL m-2
|/fu(t)\t=0 =lim jo%u(s)ds =0, u()= Z;u (7). (1.2)
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where ¢ €(1,2], f€[0,2-a]; O<np <n,<---<n,,<land & >0,i=1,m-2,
m-1

M >3 are constants given satisfying Zgﬁnf“l <1; I'is Gamma function, D”is fractional
i=1

derivative operator of Riemann-Liouville kind; and F:[0,1]xExE —2%is a closed

valued multifunction. Problem (1.1)-(1.2) is also motivated from some our previous
works [8, 12] extended to the multi-point condition which has increasing interest in the

theory of BVPs. In the case that & =2, the equation (1.1) is a second-order differential

inclusion which has been studied by many authors. We refer to [7, 20, 21] and references
therein dealing with boundary value problem for regular order differential inclusion.

This paper is organized as follows. In Section 2 we introduce some notions and recall
some definitions and needed results, in particular on the fractional calculus. Section 3 is to

provide the results for existence of W“*(I) -solutions and properties of solutions set of the

problem (1.1)-(1.2) via some classical tools such as fixed points theorem or retract property
for the fixed points set of a contractive multivalued mapping.

2. PRELIMINARIES

Let 1 be the interval [0,1] and let E be a separable Banach space; E' is its

topological dual. For the convenience of the reader, we state here several notations that will
be used in the sequel (see [22]).

- B, : the closed unit ball of E,
- L(I): the o algebra of Lebesgue measurable sets on I,
- B(E): the o algebra of Borel subsets of E,

- L (1): the Banach space of all Lebesgue-Bochner integrable E-valued functions
defined on I,

- Cc(I): the Banach space of all continuous functions f from [0, 1] into E endowed
with the norm

I £l _=supll f(t)ll.
tel

- c¢(E) : the set of all nonempty and closed subsets of E,

- cc(E) : the set of all nonempty and closed and convex subsets of E,

- ck(E) : the set of all nonempty and compact and convex subsets of E,

- cwk(E) : the set of all nonempty and weakly compact and convex subsets of E,

- bc(E) : the set of all nonempty bounded closed subsets of E,

- d(x,A) : the distance of a point x of E to a subset A of E, that is

d(x, A) =inf {[x—y|:y e A}.

- dy, (A B): the Hausdorff distance between two subsets A and B of E, defined by

d, (A, B) = max {sup d(a,B),supd(b, A)}.

acA beB
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Definition 2.1. ([2, pp. 45; 3, pp. 65]) Let f :1 — E. The fractional Bochner-integral
of order & >0 of the function f is defined by

I”‘f(t)_—j (t—s)“*f(s)ds, t>0.

In the above definition, the sign " [ " stands for the Bochner integral. For more details
on Bochner integral, we refer to [23, pp. 132].

Lemma 2.1 ([12]). Let f e L (1). We have
(i) 1f @€ (0,2) then 1”f (t) exists for almostevery tel and 1*f e Li(1).
(i) If a>1then 1“f(t) existsforall tel and 1“f e C.(I).

Definition 2.2. ([2, pp. 82; 3, pp. 68]) Let f eL:(l). The Riemann-Liouville
fractional derivative of order « > 0 of f is defined by

dn o dn (t S)n—a—l
=" (1) =
(t)= | rin—a)

D*f (t):= f(s)ds,

where n=[a]+1.

In the case E = R (space of real numbers), we have the following well-known results.
Lemma 2.2 ([5]). Let « > 0. The general solution of the fractional differential
equation D*x(t) =0 is given by

X(t) =t +Ct“ %+ t* ", (2.3)
where ¢, €R, i=12,..,n (n=[a]+1).
In view of Lemma 2.4, it follows that
X(t) = 1“D“X(t) +ct“ " +---+cC t“ ", (2.4)
forsome ¢, eR,i=12,...,n
In the rest of the article we denote by WE”"1 (I ) the space of all continuous functions in

C. (I) such that their Riemann-Liouville fractional derivative of order o —1 are in C.(l)
and that of order « arein L. (I).

3. MAIN RESULTS

Lemma 3.1. Let E be a Banach space and let G() I xI = R be a function defined
by

G(t,s)= I(a) + ¥(s), (3.1)

where
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Y(s)= (3.2)

~(1-s)"", My <SS <1,
Then the following assertions hold.

(i) Function G satisfies the following estimate,

G(t,9)| < 2

r(a)(l fa:n.“ ]

(i) 1f ueW" (1) with |f’u(t)\t=0 =0 and u(l) =Z§iu(ni), then

1
u(t):jG(t,s)D“u(s)ds,Vte l.
0
(iii) Let f el (1) andletu, :1 — E be the function defined by

:Jl'G(t,S)f(S)dS,‘v’tel.

m-1
Then 17u, (t)‘t:0 =0 and U, (1) =D &u, (7). Furthermore u, €W (1) and we get
i=1

D“ My, (t) =j f(s)ds+C,,Vtel, (3.3)
0
D, (t) = f (), ae. tel, (3.4)
where
m-1 7 1
Ci=—— {Z;J‘ m-s) "t ( —j(l—s)“‘lf(s)ds},
1- Zfﬂ. L= o ’

which depends onIy on f.

Proof. (i) From the definition of G it is easy to see that, for all s,t €[0,1],
2

r(a)(l 2@7.“ )

IG(t,s)|<
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(i) Let ye E'. Forall tel, we have

<y,iG(t,s) D“u(s)ds> =:[G(t,s) D*(y,u(s))ds

:Ia(D“<y,u(t)>)+mtla—_lw(mz_i§ilaD“<y,u(77i)>—I“D“<y,u(1)>}. (3.5)

1-).ém =
i=1
Using the assumption Iirg] 1”u(t) =0 it follows from (2.4) that
t—0"
<y,u(t)> = 14D <y,u(t)>+c1t“*l, (3.6)
for some ¢, € R. So we have
(yu()=1"D (y.u(1))+c, (3.7)

and

<y’ m_lfiu (’7i )> - Eifi <y’ u (77i )> - f‘fi 1“D* <y’ . (ni )>+Cl§énial. o

i=1 i=1 i=1

As u(l) = Eﬁiu (7;) it follows from (3.7) and (3.8) that

i=1

cl:+(§§I“D“<y,u(ni)>—I“D“(y,u(l))]. (3.9)
1- ;éﬂf—l =

Combining (3.5), (3.6) and (3.9) we get

<y,_1.G(t,s) D“u(s)ds> =(y,u(t)).

Since this equality holds for every y € E' so we have u(t)= IG (t,s)D“u(s)ds, vtel.

0
1

(iii) Let f e L3 (1) and u; (t)=[G(t,s) f(s)ds, Vtel. By the definition of G we
0
have

uf(t)=|“f(t)+£—l(§;|“f(m)—|“f(1)}. (3.10)
1_;;77;1_1 =

It's clear that 1“f € C_(l) by using Lemma 2.2. So u, is continuous on I. On the
other hand, from (3.10), it follows that

m-1

j z; (Iaf (77a)—77ia71|af (1))

0 @) =110 —g— (a1t
1S\ 5

& 77i0kl

and
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m-1 m-1 25.’77_1 m-1
Sau, (n)=3a171 )+ (Sar 11w
i=1 i=1 1 Z§|n|a_1 i=1
56 (171 (n)-n 17 )
1‘2&’7;} '

Hence u, (1) = Zﬁiuf (7). Now, let y € E" be arbitrary. One has

(90,01 (v, ) =1*{ [ty £ (5)s |

=17 (y, £ () +17 mta—_l<yZ§l f(m)-1° f()>
1 z;nlal =1

3

-1

F(a)<y,l G1°t(m)-1° f()>
r(a+ﬁ)(1—;§im“'lj

Letting t—0" in (3.11) we get Iirg]<y,lﬂuf(t)>:0,VyeE'. This shows that
t—0"
Pu ), =

X
4N

=17 (y, f(t))+

A (3.11)

It's enough to check the equalities (3.3)-(3.4). Indeed, since the function 1“f (-) has
Riemann-Liouville fractional derivatives of order y, for all » € (0,«], so is the function
u, (-) by using (3.10). On the other hand, for each y € E', we have

(9:070,0) =" (50, 0) = [ (1), 1 (3]s

=D’1°(y, f (1)) + %(Z;(y,l f nl)>—<y,laf(1)>]Dy(t“‘l) (3.12)

1- Zénf“l =
Since D’ <y, f (t)>: |« 7<y, f (t)> and
F(a) a-y-1
Dy(t“_1)= mt , O<y<a,
0, y=a,

we deduce from (3.12) that
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0070, = (1 <)o+ —t {3 (1 ()= (3.1°7 0) |

0 1- é:i i I

i=1
forall tel, and

<y, D“uf(t)>:<y, f(t)), aetel.
These imply that (3.3) and (3.4) hold. The proof is completed.

Remark 3.1. From Lemma 3.1, it's easy to see that if u, (t) = I:G(t, s)f(s)ds, felL:(l),
then

and D, ()| < Mg | ] (3.13)

k() L’

forall tel, where

M =l
c r()( gé'j

Now we establish the main theorem of the existence of the solutions to problem
(1.1)-(1.2) via applying the Covitz-Nadler fixed point theorem ([24]).

Theorem 3.1. Let F:[0,1]x ExE —c(E) be a closed valued multifunction satisfying the
following conditions

(A1) Fis L(1)®B(E)® B(E)-measurable,

(A2) There exists positive functions (,,(, € L, (1 ) with Mg ||€1 +£2||l <1 such that
i (F(620,%0). F (6% ¥2)) < G (O =]+ £ (O -vel.

forall (t,%,Y,),(t,%,,y,) el xExE.

(A3) The function t > sup{]|z|: z € F (t,0,0)} is integrable.

Then the problem (3.1)-(3.2) has at least one solution in W (1).

Proof. We defined the set valued map S: L (1) — C(LlE (1 )) defined by

S(h)={f elL(1):f(t)eF(ty,(t),D,(1)),aetelf,heli (1),
where C(LlE(l)) denotes the set of all nonempty closed subsets of L;(I) and
eWE(1),
U, (1) = [, G(t h(s)ds.

It is clear that u is a solution of (1.1)-(1.2) if and only if D“U is a fixed point of S. We
shall show that S is a contraction. The proof will be given in two steps.

Step 1. The subset S(h)is nonempty and closed for every he Ly (1). It's note that, by

the assumptions, the multifunction F (-,uh (), D“*u, ()) is closed valued and measurable

35



Phan Dinh Phung

on I. Using the standard measurable selections theorem we infer that F (-,uh (+),D""u, ())
admits a measurable selection z. One has

|2(t)] <sup{lal-ae F (t,0,0)}+d, (F (t,0,0), F (t.u, (t),D*u, (t)))

<sup{a:a<F (t,0,0)}+ £, (0)]u, (O] + £ (1) [0 uy (1)
<sup{al:aF (t,0,0)}+ Mg (4 (t) + £, (1)) Il

for almost every te I, which shows that Z€ Ly (1) and S(h) is nonempty. On the

other hand, it is easy to see that, for each he L (1), S(h) is closed in Lt (1).

Step 2. The multi-valued map S is a contraction.
We need to prove that there exists k € (0,1) satisfying

d,, (S(h),S(g))<k|h—g

for any h,g e L (1), where d,, denotes the Hausdorff distance on closed subsets in

)’

the Banach space L. (l). Let f eS(h) and ¢ >0. By a standard measurable selections
theorem, there exists a Lebesgue-measurable ¢: 1 — E such that

#(t)e F(tuy (1), D, (1)),

l¢(t)- £ (1) <d ( f (1), F (t.ug 1), D'Hug(t)))+g

forall tel. As f €S(h) we have
lo(t)-f (1) <d, (F (t.u, (0), D, (1)), F (t.u, @), D""lug(t)))+g

</ (t)”ug (t)—u, (t)H+€2 (t)‘ D, (t)—D*"u, (t)H+g,
forall t € I. This follows that
”¢_ f < MG”€1+ﬁ2
Hence ¢ € S(g) and

sup d(f,S(g))<

fes(h)

and

(1) LlR(I)”g_h LlE(I)+g’Vf ES(h).

Whence we get

sup d(f,5(g))<

since £ can be arbitrarily small. By interchanging the variables g,h we obtain
dy(S(g).S(h))< oy Ve el ().

Since k=M, ||E1+£2||1 <1 by assumption, this shows that S is a contractive map.

Applying the Covitz-Nadler fixed point theorem to S proves that S has a fixed point. The
theorem is proved.

Corollary 3.1. Let ;1 xExE — E be a mapping satisfying the following conditions
(B1) for every (X, y) € ExE, the function f(-,X,y) is measurable on I,
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(B2) for every tel, f(t,,,-) is continuous and there exists positive functions
(,,0, € (1) for which Mg ||, +¢,], <1 such that
[f(tx ) = (% )| < G (O =%+ £, ()= Vel
forall (t,%,¥,),(t, %, ,) e I xExE,
(B3) the function t+ f(t,0,0) is Lebesgue-integrable on I.
Then the fractional BVP
Deu(t) = f (t,u(t), D 'u(t)), ae.tel,
p m-1 (3.14)
1u(®)]_, =0, u@) :;;u(m),
has a unique solution u e W*(1).

Proof. The existence of solution u is guaranteed by Theorem 3.3. Let u;,u, be two
W(1) -solutions to the problem (3.14). For each t € |, we have

|D7u, (1) - D*u, (1) = H f(t.u, (1), D*u, (1)) -  (t,u, (1), D“‘luz(t))H

< 0,(0) Juy () =, (O] + £, () D, (1) - D, @) (3.15)
On the other hand, it follows from Lemma 3.1 that

Ju, () —u, (V)] < Mg | D“u, - D, ' (3.16)
And
|D“ 0, (t) - D 'u, (1) < Mg ||D“u, - D"y, oy (3.17)
Combining (3.15), (3.16) and (3.17) we deduce that
‘ DU, ~D U, |,  <Ms ||€1+ﬁ2||L1€(|)‘ DU, =D, -

which ensures D“u, = D“u,, and hence, by (3.16), we get U, = U,.

Theorem 3.2. Let F:[0,1JxExE —>bc(E) be a  bounded closed valued
multifunction satisfying the conditions (A1)-(A3) in Theorem 3.3. Then the Wg" (1) -
solutions set, S, of the problem (L.1)-(1.2) is retract in W™ (1), here the space W (1)
is endowed with the norm

_ a-1 a
l, =l +[ou], <[],

Proof. According to Theorem 3.3 and our assumptions, the multifunction
S:L(1)—>c(L(1))

defined by
S(h)={felL(1):f(t)eF(tu,(t),D "y, (t))aetel}, heli(l),
where C(LlE(l)) denotes the set of all nonempty closed subsets of L. (1) and

U, eWEa’l(I),
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u,(1) = [, G(t, 9h(s)ds,
is a contraction with the nonempty, bounded, closed and decomposable values in
Li (1). So by a result of Bressan-Cellina-Fryszkowski ([25]), the set Fix(S) of all fixed

points of S is a retract in L. (l). Hence there exists a continuous mapping
w Lt (1) — Fix(S) such that
w(h)=h, YheFix(S).
For each U eWE“'l(I ), letus set

OU)(t) = [ G(t S)p (Du)(s)ds, tel. (3.18)
Using Lemma 3.1 obtains that

’ (cD(u))(t)L:O ~0, DU =Y EOE)R).

D (D(u)) () = j u)(s)ds+C o) (3.19)

and
D* (®(u))(t) = (D“u)(t), ae.tel. (3.20)
This shows that D*(®(u)) € Fix(S). So ®(u) is a W™ (1) -solution of problem
(1.1)-(1.2), that is ®(u) €S. It remains to prove that @ is continuous mapping from
Wt (1) into S. Let ueWS" (1) and &> 0. As y is continuous on L} (1), there exists

o > 0 such that
Hh — D

<&, (3.21)

L= (1)

by <0 = Hl//(h)—l//(D“u)
for all he L (1). Let us consider the ball BWM(I)(Uﬁ) of center u with radius & in

(WE“'l(I),”.” ) Then, for ve BWal (u,6), one has ‘D“V—D“u o) < using the
definition of the norm ||||W . So it follows from (3.20) and (3.21) that
[D*(@(v))-D* (@ ()], ,, =@~y (D) oy <E B2
Using Lemma 3.1 again we deduce, from (3.18), (3.19) and (3.22), that
[ (v) ()@ (u) (t)] < Mg D (@ (v)) - D (@(u)) ooy <Mes,
[0 (@ (v)) ) = D“* (@ (u)) ()] < McT ()| D (@ (v)) - D* (@ (u)) ooy <Ml (@),

forall t € I. Combining (3.22)-(3.24) we obtain the continuity of ®. Finally, for u € S, we
have D” (u) € Fix(S). So

w(D" (u))=D*(u),

by the property of . It follows that

o)) = [, G(t, S)w(D°u)(s)ds = [ G(t, 5)Du(s)ds =u(t),
forall t € I. The proof is thus completed.
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4. CONCLUSION

Our study of the fractional inclusion
Du(t) e F(t,u(t), D“u(t)), ae. t[0,1]

provides a new technique to deal with the problem associated to the nonlocal boundary
condition of multi-point type. After finding the Green function for the linearization problem,
the existence is obtained via the multi-value contraction mapping Covitz-Nadler and the the
solution set is then a retract with the additional assumption of boundedness of F. This results,
especially existence result, can also be applied to get some results for relaxation and control
problem, as the way in [6, 8, 12].
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TOM TAT

VE BAI TOAN BIEN PHI DIA PHUONG CHO BAO HAM THUC VI PHAN
BAC KHONG NGUYEN

Phan Pinh Phung
Truong Pai hoc Cong nghiép Thuwc pham TP.HCM
Email: pdphungvn@gmail.com

Trong bai bao nay, tac gia xét mot 16p bai toan bién trong khong gian Banach kha ly E,
gém mot bao ham thirc vi phan cap khong nguyén lién két véi didu kién bién nhiéu diém, c6
dang

Deu(t) e F(t,u(t), D 'u(t)), a.e. t [0,1],
m—2
u@)| =0, u@® =3 &u(n),
i1
trong d6, D 1a toan tir dao ham cap a € (1, 2], B €[0,2—«], F 1a mot anh xa da tri nhan

gia tri dong. Vi mot s6 didu kién thich hop, tic gia chimg minh bao ham thirc trén c6
nghiém, hon nita tap nghiém 1a mot tap co rut trong khong gian WS (1).

Tw khoa: Bao ham thirc cép khong nguyén, bai toan bién, ham Green, anh xa da tri co, tap co rat.
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