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ABSTRACT

This paper extends a numerical procedure for limit analysis based on extended
¢QLWH HOHPHQW PHWKRG ;)(0 DQG VHFRQG RUGHU
strain cracked structures. The cracked structures are easily modelled and simulated
XVLQJ ;)(0 EHFDXVH LW DOORZV GLVFRQWLQXLWLHV D
are recognized by means of level set method. The resulting discretization formulation
Is then cast in a form which involves second-order cone constraints, ensuring that the
XQGHUO\LQJ RSWLPL]DWLRQ SUREOHP FDQ EH VROYH
SRLQW DOJRULWKP 7KH HI¢FLHQF\ RI WKH SUHVHQW |
numerical examples.

Keywords: Limit analysis (LA) ([ WHQG ¢ QLWH HRXRAEMHS2MNERHW KR
order cone programming (SOCP).

Introduction <DQ > @ DQG 9X > @ 7KHVH P
Limit analysis providesadirecttooIDV ¢QLWH HOHPHQW OLPLW

for structural design and safety assessmdRfluire assumptions to be made about the

RI GXFWLOH VWUXFWXUHRREBRIQMDIPIOXU R PRESFNTTX
e.g. pressure vessels and reactortY WUHQJIWK SDUDPHWHUV ~ +§

Analytical upper-bound solutions of 2DQXPHULFDO SURFHGXUHV Wi
cracked structures were originally reportef’€shes need to match the geometry of

E\ +LOO > @ (ZLQJ Hw [d® cracks qp disceptinujigsrgnd mesh
slip-line method was employed to assum_feJ H¢QHP H QW QHDU D FUDFEN
SRVVLEOH FROODSVH PHEXIST achigye aceiaiqsolyfions.

the analytical method is not applicable 5HFHQWO\ WKGLWRARVHQABHRI
for complicated problems in engineeringPHWKRG ;) (0 ZKLFK ZDV F
SUDFWLFH IRU ZKLFK D @ DRESRNRSM® ED WolH OPW O RKNR D
mechanism may not be presupposed been developed to overcome the above-
DGYDQFH &RQVHTXHQWOP\HFWURKRXNG QXFRHUWFRPLQJV
SURFHGXUHV EDVHG RQ digc@htiiidesH &réd PeiQitd/ td QrGss
bound theorems have been developed WOHPHQWY DQG DUH RIWHC
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OHYHO VHW PHWKRG 7K¢tohbingd Unih théVXEEBM WasedHIiynd Q W
to investigate the performance of XFEM iranalysis problem so that engineering
WKH FRQWH[W RI OLPLWpiskhWith & Mrg8 hushMétoX valaslésH V
involving cracks or discontinuities. FDQ EH VROYHG XVLQJ KLJKO
,Q WKLV SDSHU ZH H[dvaHiQieiyr moir® xgoHturs FNumerical
procedure for limit analysis based oH[DPSOHY DUH SUHVHQWHG V
HIWHQGHG ¢ QLWH HO H P &ffectierress\Wfkhiréposejl(fiethod.
and second-order cone programming  grief of the XEEM
(SOCP) to plane strain cracked _ _
VWUXFWXUHV 7KH GLVSO DR kY H8f of $heMsis o Addaar
discontinuities and strong singularity at1fQULFKPHQW IXQFWLRQ WR V
FUDFN WLS DUH DSSURH®DHRVIRI EEDMKY DSSUR[LPD)
shape functions which includes Heavisidgartition of unity concept [8]. The enriched
functions (for introducing discontinuities)basis shape functions are associated to
DQG DV\PSWRWLF | XeHOM GERRQW IQRHDDO WEHJIUHHY  RITU
(dealing with singularity). The second-GLVSODFHPHQW ¢(¢HOG FDQ EH
order cone programming (SOCP) is also

u" x N, xlu ijsz#j N.x B_xb?Z! L (1)
¢ K

. o , I I
i N i N N D1 .

where

NLV WKH VHW RI WKH VWDQGDUG (¢QLWH HOHPHQW

N°is the set of nodes whose support is entirely split by the crack (circled nodes in
JLIXUH

N"LV WKH VHW RI QRGHV ZKLFK FRQWDLQ WKH FUD
N, x Is the shape function associated with node

u a b° DUH WKH GLVSODFHPHQW DQG HQULFKPHQW

I J

Hx LV WKH PRGL¢{¢HG +HDYLVLGH IXQFWLRQ ZKLFK
DQG LI [ LV XQGHU WKH FUDFN

B,x LV D EDVLV WKDW VSDQV WKH QHDU WLS DV\PES
. A . . . _a
BD@ \/r_sm? \Fcosz, \f_sm—zsm , fcos—zsmT(_(' (2)

Figure 1. An arbitrary crack placed on a mesh-enrichment strategy
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In order to derive the strain- Figure 2. Structural model
GLVSODFHPHQW PDWUL[] LW LV FRQYHQLHQW WR
UHZULWH WKH HQULFKHG DSSUR[LPDWLRQ DV
follows:

u" x Ny xu | Nyx Ixa (3

i*N I I jeN€

1RWH WKDW LQ (T WKH LQWHUSRODWLRQ
SURSHUWYX LyH LV QRW YDOLG ,Q
RUGHU WR UHWDLQ WKLV WKH HQULFKHG SDUW RI

Eqg.(3) must be vanished at nodes. The Introducing  the  kinematically

following shifting is often made: DGPLVVLEOH YHGRF&MA ¢ HO
ut x Npxu o Npxooox loxga; |orates¢ WKH H[WHUQDO ZRUN
" o 4H[SUHVVHG LQ WKH OLQHDU |

) Fu ffud 3 g'ud (8)

$V D UHVX®@W HVKBIHPHQW PDWULJ[

B FDQ EH H[SUHVVHG DV The kinematic principle states that
B= B B2 (5) the minimum value of load multiplier

¢ can be determined by the following
whereB®*m LV WKH Y%DWB DHIemRayeal programming (Martin [])
PDWBULRQG LQ WZRB@aBHQYLRQVY

min 3D &4 : (@)
a :
fem Niyx ° « . i b
B 0 N« (6) EHLu in (b) 9)
Ny NS st @ 0 on*, (0

Fu 1 (d)
andB" LV WKH HQULFKKWGEWHWUW RI WKH

HOHPHQW. PDWUL]J where D & is the plastic dissipation

(ND L N, I 0 & per unit domainand L is the dijerential
B 0 (N), : Ni(,),« oOperator

(NDy o NGy (ND L NG S wl @
i O((
(7) W

- . L o ¥ (10)
Limit analysis based on XFEM W
and SOCP W «
- T K
Kinematic formulation y WXo

I[HW Y GHQRWH WKH GRPAPKRXWI ®PRVV LQ JHQF
ULJLG SHUIHFWO\ SODVWLR ERGW LGHDOOH GaédRda®V LE O |
GRPDLQ ZLWK D ERXQ G Dyd hotmdhdedsudéh Wdt Q X R X'V
and discontinuous parts such that o, 4 (11)

L * * *as shown

t C

in Figu:]ure 2. 'Crheubody IS subjected to body )LQ D 00\ W_K H OLP '—_W OR
forcesf and to surface tractiorgson the ©an be obtained by solving the following

. optimisation problem (in normalised form
free portion *, of *. P P ( )
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the plastic dissipation (objective function)
O min 3D #4 : (2) can be formulated as conic constraints.
,Q QH[W VHFWLRQ D QXPHL

eH L in : ; . o . .

< Ou mn N (b) (12) using SOCP in combination with XFEM
st ® on*, (c) is introduced to solve the limit analysis of

Fu 1 (d)

cracked structures.

$OWKRXJIK WKHUH  DXFRM disegigation and solution
optimization techniques can be applied tBrocedure
VROYH WKH DERYH SUREOHRe 8&uUrB UiV Xi@iD VetEte \ is
the objective function in the associatedharacterized by localized plastic
optimization problem is not differentiable GHIRUPDWLRQV PHDQLQJ
everywhere while powerful optimizationGHIRUPDWLRQ H[LVWV DW
algorithms require their gradients to bet RZHYHU LQ QXPHULFDO VRC(
DYDLODEOH HYHU\ZKHU HhegDIlocalrRedVregiad RK @bt KnOwWr/ a
have been proposed in the literaturt ULRUL DQG KHQFH ZH DVVX
to overcome this singularity problem.UDWHV WR EH H[LVWLQJ DW
These include linearization of the yieldormulation. When the structure reaches
FRQGLWLRQ UHJXODUL]JIVWRLRIQP LRV WWKBIWSHO WKL R S W
GLVVLSDWLRQ IXQFWLRQG IDWJ® HDWGE W E RQL WR 8\W WR_LY]t
algorithm. Perhaps the SOCP is one dtfie collapse mechanism is formed.
WKH PRVW UREXVW DQG&RIQVFHHARXMQWOIRWKHKAVRRVRFL
WR RYHUFRPH WKLV G Lihgltd8Origid aBdHoRaBX XelionR tan be
HI¢FLHQW DOJRULWKPV DB ® HWPBIOHPEH Q WWOHUIHRRVH |
HILVW DQG KHQFH LW LYDUHDHQOBD QWOWN B UWHQSSS UF
LWV XVH WR RXU SUREOMWP DRGHWRKHW RBROMWHYV IDL
commonly used yield criteriacan becastihV HPSOR\HG WKH SODVWLF
WKH IRUP RI FRQLF FRQVRALQ EGWHVSDA 8 WAIGHDWIRUH

ne G
DXFEM 3 o "/TD TdH : Mi ’ iTD iT (13)
el °° 1

N
o1 4 2 @ 0
=2 4 4 ;
< for plane stres

00 3

X

1 1
1

8
whereD @
: 1
-0 O

@

< .
Q( for plane strail
i

ands, LV WKH \LheQ@NGWe HRIVWKLY SUREOHP L H WKH !
the number of elements and total Gaussin be formulated in the form of a sum of
SRLQWYV UHVSHFWLYHO\norm as

~ The problem (12) is a non-linear DXFEM T | (14)
optimization problem with equality i
FRQVwWUDLQWY ,Q IDFW WKH REMHFWLYH IXQFWLRQ
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wherel] ¥ DUH DGGLWLRQDO YDULDEOHYV GH:QHG E\
(2 02 0 @&

° 2 %zl J3 QU for plane stres
o UK ®n 0 K
v @ (15)
: x>9| H i a H °o
o l{ s '«  for plane strair
° lJ_‘ %i 4 ¥,

, QWURGXFLQJ DX{LtQ L0 d YedubtiorLib ta@®dvailable number of
..t RSWLPLIDWLRQ SURE®OHPHHV RDQUEHGRP DQG W

cast as a SOCP problem: YHORFLW\ ¢ HOG FDQQRW EH
e 7R RYHUFRPH VXFK D SUREOF
min | Oawi, (16) reduced integration technique [10] will be

u=0 onI, used.

& =Bu I1XPHULFDO H[DPSOHV

F(u)=1 ,Q WKLV VHFWLRQ WKH St

e | <t, i=12.. NG proposed solution procedure is illustrated

via various benchmark problems in which

analytical and other numerical solutions
1RWH WKDW IRU SOD@HavalplkeDLQ SUREOHPV

incompressibility conditions must be Simple-edge notched plate problem
introduced in order to ensure that the

SODVWLF GLVVLSDWLRQ ' LV KB WM W HIRASOPROROV
to ensure that strict upper bound can bEGJH FUDFNHG SODWH XQGHL
REWDLQHG WKLV FRQ G LAanRusedforfague-crapk propageton H G
HYHU\ZKHUH +RZHYHU WKHMYVORKHREIGREOHP JHRPH!'
¢QLWH HOHPHQWYV DUH XV¥RQGWW KD HR B G WWPLHMK DHIBIGW

Figure 3. Single-edge cracked plate under tension
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(a) Geometry and loading (b) Element mesh
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Analytical solution of this problem SODQH VWUHVYV FRQGLWLRQ
was proposed by Ewing and Richard

GCH,OHG 'E% can be computed as
> @ ZKHUH D VOLS OLQH PI—?\%KRG BV XVHr%D ,%
-1y’ V2 -1
A :K—yx+77j +y(1-x) ] —(yx—%j for deeply-cracked plate (17)

O1lx x* |RU VKRUW FUDFINGIG SODWH | (18)

wherex 8/ o.qJ %
In plane strain condition the limit load factor can be computed as

1.70D 0206 x © /5874 xz‘i% 0.206 x for x > 0.515 9 9,

a1l x A23X%*> x%
adl x JL23%* x° 2X° 0545x (20)

IRU VKRUW FUDFEIMGG SODWH |

Numerical solutions were also(number of nodes per short edge and length
LQYHVWLIJDWHG E\ RW K Hadg®rspektivdlyyadishbwrkiD Rigure @b.
Khoi [5] in which special elements is usetNumerical results for different rati
WR FDSWXUH WKH VLQJX@BHhowN Witifdre @ fot bb Blaidte3sQ G

FUDFN WLSV ,Q RXU VWRKS andWi¥ sttfQ@RD)FUDFNHG
plate is modelled with variation dfixM

J)LIXUH /ILPLW ORDG IDFWRU RI VLQJOH HGJH FUDFN
3'+ 30O0DQH VWUDLAQ

JURP WKH UHVXOWYV aJWPBDo(DdiIEHs.R(Eva%J\O.EI\@th
that the present solution convergesto thE ODQH VWUDLQ FRQGLWLRQ

H[DFW VROXWLRQ ZLWK oWk ith dihMaybrithh 5V 0,878 D Q
2.5% for PS condition and 3.9% for PQynly error of 0.4% compared to the present
condition. When compared with solutiorsp|ytion. Although present solution is a
SUHYLRXVO\ REWDLQHG o4jQvwd® KIHKHURREDQ WKH

agreements can be observed in both R$the present procedure mesh generation
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Is simple and cracks are realised bw a suitable form so that it can be solved
PHDQV RI OHYHO VHW PHWKRG KLRHKWBR HHLF LIWIONY SUL
underlying optimization problem is caspoint algorithms.

Double-edge notched plate problem
Figure 5. Single-edge cracked plate under tension

1T

)LQDOO\ WKH GRXE @henth@idaH in GGRal Fgfdblém. It has
WHQVLOH SODWH LV FRQletdmd @ pdpianbieie@ndarh fal Xabidus
7KH SUREOHP ZDV ¢(UVW QXPH@ LEBADID PRBEIHDDWO LQ WK
et al. [1] in order to illustrate the lockingplastic limit analysis.

Figure 6. Collapse mechanisms and plastic dissipation distribution foa %

(a) Collapse mechanisms (b) Plastic dissipation distribution

Again taking advantages of theHOHPHQWYV RU GRPDLQV RI L
:)(0 WKH IXOO FUDFNHGmasd beWddodnize® R @dvance H@ care
with variation ofNxM. In order to shown must be made to generate mesh around
WKH HIITHFWLYHQHVV RI WHKH FSWHRANHAWQ W QRBH WWR GV LSV
the obtained results will be comparedan be observed from that the present
ZLWK XSSHU ERXQG VRO &€génerally in rea@nably good
ORZHU ERXQG VROXWL R&Merment with thosegbbtBilg@&previously.
PLIHG VROXWLRQV > Th® plasticHigdibaior WskiBuBovi for the
do not allow discontinuities acrossasea }é are shown in Figure 6.
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Table 1. The limit load factor of the present method in comparison with those of other methods
for the double-edge notched platgroblem

Approach Author and methods a=1/3 a=1/2 a=2/3
Kinematic Ciria etal. [12] 1.1390
Le et al. [13] 0.9412 1.153 1.4097
) (0 [ 0.9846 1.2198 1.4722
) (0 [ 0.952 1.1747 1.4353
) (0 [ 0.9373 1.1527 1.4094
Static Ciria et al. [12] 1.1315
Krabbenhoft and Damkilde [14] 1.1315
Tin-loi and Ngo [15] 0.947 1.166 1.434
OL[HG VRO XWildrse®[16] 0.9271 1.1366 1.3894
Christiansen and Andersen [17]0.9276 1.1358 1.3884
Conclusion results available in the literature for plane

A numerical limit analysis procedureStrain condition.
WKDW XVHV WRHWH[WHIHP HOWPHULFDO H[DPSOHV I

method (XFEM) and second-order cond® HPRQVWUDWH WKH HI¢FLHC

programming (SOCP) has been IDrOIOOSe|a1ethod. It is shown that the proposed

Advantages of applying the XFEM finit procedure is able to solve large-scale

: roblems in engineering practice.
analysis of cracked structuypeoblems can P g gp _ _
be drawn as follows: Although only two-dimensional

_ _ SUREOHPV ZHUH FRQVLGHUH
(1) Numerical solutions ofthe XFEM pHW KRG FDQ EH H[WHQGHG

DUH LQ JHQHUDO FORYV H R\PRS @HKHVIW O K WWNKRIDXOWE R Q
and show good agreement with numericéb a variety of loading regimes.
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